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Abstract
Background: The dispersion-aggregation behaviors of suspended colloids in rivers and estuaries
are affected by the compositions of suspended materials (i.e., clay minerals vs. organic
macromolecules) and salinity. Laboratory experiments were conducted to investigate the
dispersion and aggregation mechanisms of suspended particles under simulated river and estuarine
conditions. The average hydrodynamic diameters of suspended particles (representing degree of
aggregation) and zeta potential (representing the electrokinetic properties of suspended colloids
and aggregates) were determined for systems containing suspended montmorillonite, humic acid,
and/or chitin at the circumneutral pH over a range of salinity (0 – 7.2 psu).

Results: The montmorillonite-only system increased the degree of aggregation with salinity
increase, as would be expected for suspended colloids whose dispersion-aggregation behavior is
largely controlled by the surface electrostatic properties and van der Waals forces. When
montmorillonite is combined with humic acid or chitin, the aggregation of montmorillonite was
effectively inhibited. The surface interaction energy model calculations reveal that the steric
repulsion, rather than the increase in electronegativity, is the primary cause for the inhibition of
aggregation by the addition of humic acid or chitin.

Conclusion: These results help explain the range of dispersion-aggregation behaviors observed in
natural river and estuarine systems. It is postulated that the composition of suspended particles,
specifically the availability of steric polymers such as those contained in humic acid, determine
whether the river suspension is rapidly aggregated and settled or remains dispersed in suspension
when it encounters increasingly saline environments of estuaries and oceans.

Background
The dispersion-aggregation behavior of suspended col-
loids is important to the cycling of matter in rivers and
estuaries. For example, the transport and fate of dissolved

metal contaminants in rivers and estuarine environments
are often directly determined by the potential co-aggrega-
tion and sedimentation along with the suspended col-
loids [1]. Excess nutrients that may be harmful to
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estuarine and coastal ecosystems and fisheries are some-
times removed through the natural processes of aggrega-
tion and sedimentation of suspended colloids [2]. The
aggregation and dispersion of suspended colloids signifi-
cantly alters the optical properties of coastal waters and
thus a proper interpretation of remote sensing imagery
requires the knowledge of the site-specific colloid aggrega-
tion-dispersion dynamics [3].

Upon aggregation, river and estuarine colloids are settled
to form bottom sediments. The sedimentary aggregates
found in estuarine sediments are typically composed of
open, porous organo-clay complexes (Figure 1). The
essential components of these aggregates are colloidal-
sized (< 2 μm) clay mineral particles and colloidal organic
matter (organic detritus, living or dead cells, and their
degradation and humification products) along with inter-
stitial water and occasional free gas that fills the pore
space [4,5]. In this report, we use the term "aggregates" to
represent units or packets composed of many individual
sedimentary colloids and particles. When the context
necessitates, these units have sometimes been sub-classi-
fied into aggregates, agglomerates, fecal pellets, and flocs,
based on the mechanical and/or physicochemical forces
that hold the colloids and particles together [6].

It has been widely considered that the suspended colloids
aggregate due to salinity increase when the river and estu-
arine waters are mixed with seawater in the vicinity of the
river mouths. According to the popular Derjaguin-
Landau-Verwey-Overbeek (DLVO) Theory, the interaction
energy between two similarly charged suspended colloids
is determined by the sum of the electrostatic repulsion
between the electrical double layers (EDL) at the surface
of both particles and van der Waals attraction between the
particles. The DLVO theory elucidates the aggregation of
suspended colloidal particles, such as hematite and latex
colloids, due to increased ionic strength [7]. Increase in
electrolyte concentrations allows EDL on the surface of
charged colloids to diminish, allowing colloids to come
closer and eventually succumb to van der Waals attrac-
tion.

The term "physicochemical flocs" has been used in the
past to describe the initial formation of clay aggregates
within water columns and in the immediate vicinity of
sediment-water interface [4,8-10]. A similar physicochem-
ical aggregation behavior has been also observed for iron
oxides [11,12]. The previous clay studies argue that the
open, typically "face-to-edge" association of clay colloids
and particles in recent, unconsolidated fine-grained sedi-
ments (Figure 2) arises from the electrostatic attraction
between negatively charged faces and positively, or at least
less negatively, charged edges. The net surface charge of
clay mineral particles is a result of two different types of
surface charges: (i) permanently negative charge on the
basal plane (i.e., "face") due to isomorphic substitution of
Si by Al in Si-O4 tetrahedral sheets; and (ii) pH-dependent
charge at the "edge" surfaces due to the reversible proto-
nation and deprotonation of the surface hydroxyl groups
[13]. The former is independent of pH and represents >
90% of the surface charge in the case of montmorillonite
due to the platy morphology [14], whereas the latter is pH
dependent. In low pH (i.e., high proton activity), the lat-
ter becomes less negative or even positive according to the
reversible protonation and deprotonation reactions of
silanol (Si-OH) and aluminol (Al-OH) surface groups.
The edge surface charges of montmorillonite and kaoli-
nite have been estimated from potentiometric titration to
be very close to zero at circumneutral pH [15,16].

The modified DLVO theory can explain how the attraction
increases between negatively charged face surfaces and
positively charged or neutral edge surfaces in solutions
with higher concentrations of electrolytes (Figure 3) [17].
Essentially, the extended EDL for the negatively charged
face surfaces can mask (or spill over on) the neutral or
positive charge at edge surfaces in low salinity solutions.
In this case the electrostatic force between the face and
edge surfaces are repulsion due to their (apparent) nega-
tive charge. However in high salinity solutions, the "spill

Transmission electron micrograph (TEM) image of resin-embedded, ultrathin-section of fine-grained sediment from the Bay of St. Louis, MississippiFigure 1
Transmission electron micrograph (TEM) image of 
resin-embedded, ultrathin-section of fine-grained 
sediment from the Bay of St. Louis, Mississippi. The 
fabric is characteristically porous, as the light grey color indi-
cates pore space, now replaced by resin. Dark features rep-
resent clay mineral particles (domains) and heavy metal-
stained organic matter. Bright areas are thin sectioning arti-
facts (i.e., holes after mineral grains were plucked out during 
thin-sectioning.)
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over" EDL is diminished and the edge surfaces are more
exposed. Electrostatic repulsion is no longer strong, result-
ing in the face-to-edge arrangement of clay particles that
are ubiquitous in fine-grained sediments. The rapid aggre-
gation of river colloids upon salinity increase within estu-
arine environments, observed in several previous field
and laboratory studies [18-21], may be explained by this
mechanism.

However, numerous other studies report from environ-
ments in which there is little evidence of salinity-induced
aggregation in river mouth and estuarine environments.
[22-25]. Clearly, there are estuarine systems with sus-
pended colloids in which DLVO-type interactions are not
significant [4]. Previous studies show that colloidal sus-
pension of clay minerals and iron oxides that also contain
abundant organic matter (OM), especially humic acid
(HA), resists aggregation under increased electrolyte con-
centrations [26-31]. In most cases, the resistance to aggre-
gation has been qualitatively attributed to the adsorption
of negatively charged organic polyanions on the clay edge
surfaces and resulting strong negative charges on the edges
[28,31-33]. The possibility of other repulsive forces (e.g.,

steric repulsion) has also been qualitatively alluded
[30,33].

Thus, the purpose of this study is to investigate the effect
of OM on the dispersion-aggregation behavior of river
suspended colloids using the model organic matter
(humic acid and purified chitin) and model clay mineral
particles (< 1 μm montmorillonite, a common clay min-
eral type comprising the suite of clay minerals in marine
and estuarine fine-grained sediments). The suspension
concentrations typically found in OM-rich rivers of tem-
perate regions were studied (i.e., 8 mg/L clay and up to 4.8
mg/L OM suspensions). The results were analyzed quanti-
tatively using the surface interaction energy model based
on the DLVO interactions between different model sur-
faces, in order to quantitatively elucidate the significance
of non-DLVO interactions in the dispersion and aggrega-
tion of OM-rich colloidal suspensions in estuarine envi-
ronments.

Schematic drawings of a clay aggregate in a face-to-edge (F/E) orientation that is ubiquitous in unconsolidated fine-grained sedimentsFigure 2
Schematic drawings of a clay aggregate in a face-to-
edge (F/E) orientation that is ubiquitous in unconsoli-
dated fine-grained sediments. A typical sedimentary clay 
colloid is composed of several layers of clay unit cells that 
have sheet-like morphology. (It appears as a stack of rods in 
this schematic 2D cross section.) Each colloid has large, neg-
atively-charged basal planes (i.e., faces) and less negatively (or 
positively) charged edges.

Schematic representation of the electrical double layers (EDL) around a clay particle under low and high ionic strength conditionsFigure 3
Schematic representation of the electrical double 
layers (EDL) around a clay particle under low and 
high ionic strength conditions. The pH < pHpzc is 
assumed. (a) A model clay particle (domain). (b) Clay particle 
suspended in a low ionic strength solution. The EDL is com-
parable to the particle thickness, and as a result, EDL on edge 
surfaces are masked by EDL on face surfaces. (c) Clay parti-
cle suspended in a high ionic strength solution. EDL is rela-
tively thin, and EDL on edge surfaces are exposed. As a 
result, there is electrostatic attraction between oppositely 
charged face and edge surfaces. After Tombacz and Szekeres 
(2006).
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Experimental Method
Materials and preparation
Montmorillonite (Ward's Scientific, powdered bentonite,
46E0435), 2 g, was soaked in 1000 mL distilled water
overnight, agitated, and settled for 7 hours and 22 min-
utes in a settling column. The supernatant in the upper 2.5
cm of the column containing the size fraction of < 1 μm
was collected and saved. This process was repeated several
times to collect enough material for an adequate suspen-
sion. The suspension concentration was checked by dry-
ing and weighing a 20 ml aliquot of the homogenized
suspension, and then the remainder was adjusted by add-
ing milli-Q water to yield a 16 mg/L stock suspension.
After the addition of milli-Q water, the suspension was
stirred for 1 minute before placing an aliquot in the sam-
ple cell for size analysis or electrokinetic analysis.

A chitin (Sigma, poly-[1→4]-β-N-acetyl-D-glucosamine,
purified powder from crab shells, CAS 1398-61-4) sample
of 16 mg was dissolved in 1 L milli-Q water and stirred for
1 hour. Visible sediment formed during the subsequent 1-
hour settling was removed by filtering through 0.45 μm
Supor membrane syringe filters. The chitin stock suspen-
sion was stored cold, used and discarded within 72 hours.

Humic acid (HA) (Aldrich, Humic acid sodium salt, 60%
humic acid, CAS 68131-04-4) was dissolved in milli-Q
water to yield 27 mg/L stock suspension (or 28 × 60% =
16 mg/L). This was stored cold, used and discarded within
72 hours. Before use, the HA suspension was filtered
through 0.45 μm Supor membrane syringe filters to elim-
inate possible aggregates formed during storage.

These suspensions are combined so that the final suspen-
sion concentrations in experimental runs are 8 mg/L for
montmorillonite, up to 4.8 mg/L for HA, and 4.8 mg/L for
chitin. These suspension concentrations are within the
typical values of material concentrations found in rivers.
For example, waters from immediately above the upper
estuary of the Pearl River in southern Mississippi has been
characterized to contain 30 ± 20 mg/L total suspended
solids (TSS) [34], with 21 weight % organic and 79 weight
% inorganic materials (R. H. Stavn, unpublished data).

Artificial seawater (ASW) was prepared by dissolving
23.93 g NaCl, 4.01 g Na2SO4, 0.67 g KCl, 0.20 g NaHCO3,
10.83 g MgCl2·6H2O, and 1.52 g CaCl2·2H2O to 1 L
milli-Q water (modified after [35]).

Size analysis of suspended particles and aggregates
The size of suspended particles/colloids and aggregates
was investigated by dynamic light scattering spectroscopy
(DLS) using a Malvern Zetasizer nano-ZS equipped with
MPT-2 titrator at 25°C. The details of DLS techniques can

be found elsewhere [33,36]. Briefly, in DLS measure-
ments, the temporal evolution of the intensity fluctua-
tions of visible light that travels a known distance through
an aqueous suspension is used to measure the transla-
tional diffusion coefficients of suspended colloids/parti-
cles. From the translational diffusion coefficient the
average hydrodynamic diameter (dH) can be determined
via the Stokes-Einstein equation. The actual calculations
were done using Malvern's DTS® software developed spe-
cifically for the Zetasizer.

In reality, the DLS measures the autocorrelation of the
temporal fluctuations in the intensity of scattered light
due to Brownian motion of the particles and colloids. The
measured scatter is expressed as a function of time (i.e.,
correlation function). The translational diffusion coeffi-
cient is obtained from this function using the a fitting
method called cumulant analysis [37,38]. The materials
suspended in this study (i.e., montmorillonite particles/
colloids, OM molecules, as well as their aggregates) are
not spherical. Consequently, the dH values measured in
this study are considered to be a measure of the relative
sizes under given experimental conditions. In addition, it
should also be noted that the materials vary in size due to
the range of sizes in individual particles/colloids as well as
the size variation due to aggregation. Consequently, the
dH values reported in this study are the average hydrody-
namic diameter. Whereas inversion methods (e.g., CON-
TIN) are often used in polydispersed systems to obtain the
size distribution as well as average dH from the correlation
function, the complexity of highly polydispersed natural
systems with non-spherical particles make the application
of inversion methods impractical. Thus the cumulant
method was used in this study [37].

The dH values reported in this study are based on the size
distribution by scatter intensity, rather than on the size
distributions by volume or by the number of discrete par-
ticles [39]. The scattering intensity of a particle is propor-
tional to the particle size to the sixth power.
Consequently, the dH values reported here are a robust
mean to compare the size differences of larger particles
and aggregates, while being insensitive to the possible
contributions from smaller particles that occupy less than
50% of the suspended material mass.

The DLS has been used successfully in previous laboratory
studies to characterize the dH values of clay colloid and
aggregate suspensions [28,33] as well as the that of HA
macromolecules suspended/dissolved in aqueous media
[37,40,41]. It should be noted that, even though the indi-
vidual macromolecules of dissolved HA is very small (i.e.,
dH ≈ 3 nm, [42]) approaching the lower resolution limit of
the DLS analysis by Malvern Zetasizer nano ZS (i.e., dH >
Page 4 of 11
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0.6 nm, [39]), they usually take the form of aggregates, or
supramolecules, in aqueous suspensions. The supramole-
cules are typically reported to be in the range of dH = 8 –
450 nm with the average dH values in the order of a few to
several hundred nanometers [40,41].

The size analyses were conducted separately for montmo-
rillonite-only suspension, chitin-only suspension, HA-
only suspensions, montmorillonite plus chitin suspen-
sions, and montmorillonite plus HA suspensions.

The effect of salinity on the sizes of suspended colloids/
particles and aggregates were determined by tracking the
time-dependent evolution of dH values following the mix-
ing of ASW with the clay (+/- OM) suspensions using DSL.
Prior to each analysis, the pH value was adjusted to ~7.2
with a small amount of 0.1 N NaOH or HCl. After mixing
with ASW, the mixed aqueous solution was continuously
stirred. Every 3 – 5 minutes, the mixed aqueous solution
was introduced to the Zetasizer sample cell with the circu-
lation system integrated into the MPT-2 titrator for the
DLS analysis.

Zeta potential analysis of suspended particles and 
aggregates
Zeta potential is an electrokinetic property of the EDL sur-
rounding the particle. It is a potential at the slip plane that
divides the diffuse layer into two regions: the inner diffuse
layer where ions move with the particle movement, and
outer diffuse layer where ions are still influenced by the
particle due to long range forces but are not part of the
coherent unit that moves with the particle. Even though
the ζ-potential is defined as such and is strictly different
from the surface potential, it is often used as a proxy for
the surface potential as: (i) it represents the average elec-
trokinetic behavior of the particles; and (ii) it can be deter-
mined experimentally unlike the surface potential.

The analysis of ζ-potential as a function of pH at a range
of discrete salinity values were conducted by laser Doppler
velocimetry (LDV) using a Malvern Zetasizer nano-ZS
equipped with a MPT-2 titrator at 25°C. Each suspension
sample, with an appropriate adjustment to pH and salin-
ity, was loaded into a capillary cell with embedded elec-
trodes at either of the two ends using the titrator.
Suspended particles moved towards the electrode of the
opposite charge when the potential was applied, and their
velocity was measured and expressed in the unit field
strength as their mobility. By knowing the physical prop-
erties of the suspension medium, the velocity can be con-
verted to the ζ-potential using the Smolchowski equation
[38]. The LDV techniques have been previously used to
characterize the ζ-potentials of clays [43] and HA [44].

Results
Particle aggregation in montmorillonite plus OM systems
The average dH values of pure montmorillonite, HA, and
chitin suspensions, without salinity increase, were deter-
mined by DLS to be 211 (± 50), 181 (± 23), and 269 (±
31) nm, respectively.

Montmorillonite colloids in montmorillonite-only sus-
pension form aggregates in constantly stirred solutions
with elevated salinity (Figure 4). In zero salinity solutions,
the value of dH remains at approximately 200 nm through-
out the first 60 minutes after mixing with ASW. In systems
with ASW (i.e., S = 1.8, 3.6, and 7.2 psu), the DLS analysis
detected increase in the value of the average hydrody-
namic diameter (dH) which indicates the formation of
aggregates. This result agrees with the previous studies of
laboratory kaolinite and montmorillonite aggregation in
which the dispersion-aggregation properties of pure clay
suspensions were found to be primarily determined by
the solution ionic strengths (See Figure 3, also [29,45]).
This is the behavior expected from suspensions whose dis-
persion-aggregation behaviors are primarily governed by
the DLVO behaviors of competing electrostatic repulsion
and van der Waals attraction.

Average hydrodynamic diameters (dH) of montmorillonite-only suspensions (8 mg/L) in constantly stirred solutions were measured as a function of time after mixing with artifi-cial seawater (ASW) using dynamic light spectroscopyFigure 4
Average hydrodynamic diameters (dH) of montmo-
rillonite-only suspensions (8 mg/L) in constantly 
stirred solutions were measured as a function of time 
after mixing with artificial seawater (ASW) using 
dynamic light spectroscopy. The pH was circumneutral. 
The results show a lack of aggregation in the zero salinity 
suspension. On the other hand, at elevated salinity values, (S 
= 1.8 – 7.2 psu), the colloidal particles rapidly aggregate dur-
ing the initial ~15 minutes following the ASW mixing. In the S 
= 1.8 psu suspension, the aggregates reach the steady state 
average size of dH ≈ 600 nm after 20 minutes. In the S = 3.6 
and S = 7.2 psu suspensions, the aggregates become larger 
(dH ≈ 1,100 nm) after the initial rapid aggregation.
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The colloidal suspensions in montmorillonite + HA sys-
tems did not aggregate as much as the montmorillonite-
only suspensions upon mixing with ASW (Figures 5 and
6). With a small amount of HA (1.6 mg/L), the aggrega-
tion in S = 1.8 and 3.6 psu suspensions were trivial (Figure
5). With more HA (4.8 mg/L), no time-dependent aggre-
gation was detected in S = 1.8 and 3.6 psu suspensions
(Figure 6). With a higher salinity value (S = 7.2 psu), the
mixed montmorillonite + HA suspensions went through
some degree of time-dependent aggregation. However,
the rate of aggregation was significantly slower than the
rate of aggregation observed in the system with no HA
(Figures 4, 5, 6). These results agree with the previous
studies in which the salinity-induced aggregation of clays
were hindered by the addition of HA [27]. It has been
argued that the HA is adsorbed on the clay edge surfaces
due to the surface complexation between clay aluminol
and HA carboxyl groups [28,46]. This increases the disper-
sion by: (1) the increased negativity (or even charge
reversal from positive to negative) at the clay edge surfaces
(and thus increased electrostatic repulsion); and (2) steric
repulsion due to polymeric components of HA
[27,32,33].

The colloidal suspensions in montmorillonite + chitin
systems did not aggregate as much as the montmorillon-
ite-only suspensions (Figures 7). With chitin (4.8 mg/L),
very little, if any, time-dependent aggregation was
detected in S = 1.8 and 3.6 psu suspensions. With a higher
salinity value (S = 7.2 psu), the mixed montmorillonite +
chitin suspensions went through some amount of time-
dependent aggregation. However, the rate of aggregation
was much slower than the rate of aggregation observed in
the system with no chitin (Figures 4 and 7).

The results can be summarized as follows. (1) Montmo-
rillonite-only suspension aggregates with increasing salin-
ity, as expected from DLVO Theory: the system's
dispersion-aggregation characteristics are primarily gov-
erned by the balance between electrostatic repulsion and
van der Waals attraction. (2) The DLVO-driven aggrega-
tion of montmorillonite is inhibited by the addition of
HA or chitin. The magnitude of inhibition is a function of
salinity.

Zeta potential of organic matter and aggregation 
behaviors
The ζ-potential of chitin as a function of pH at low salinity
values (S ≈ 1.1 – 2.1) characterizes suspended chitin as
particles with little electrostatic charges (Figure 8). This

Average hydrodynamic diameters (dH) of montmorillonite (8 mg/L) + HA (1.6 mg/L) suspensions in constantly stirred solu-tions were measured as a function of time after mixing with artificial seawater (ASW) using dynamic light spectroscopyFigure 5
Average hydrodynamic diameters (dH) of montmo-
rillonite (8 mg/L) + HA (1.6 mg/L) suspensions in con-
stantly stirred solutions were measured as a function 
of time after mixing with artificial seawater (ASW) 
using dynamic light spectroscopy. The pH was circum-
neutral. The results show a lack of aggregation in the zero 
salinity suspension. In the suspensions with slightly elevated 
salinity (i.e., S = 1.8 and 3.6 psu), a slight increase in the aver-
age dH was detected toward the end of the time series 
observations (T ≈ 60 minutes). At the highest salinity value 
investigated (S = 7.2 psu), the colloidal particles gradually 
aggregated during the ~60 minutes following the ASW mix-
ing.

Average hydrodynamic diameters (dH) of montmorillonite (8 mg/L) + HA (4.8 mg/L) suspensions in constantly stirred solu-tions were measured as a function of time after mixing with artificial seawater (ASW) using dynamic light spectroscopyFigure 6
Average hydrodynamic diameters (dH) of montmo-
rillonite (8 mg/L) + HA (4.8 mg/L) suspensions in con-
stantly stirred solutions were measured as a function 
of time after mixing with artificial seawater (ASW) 
using dynamic light spectroscopy. The pH was circum-
neutral. The results show a lack of aggregation in the zero 
salinity suspension. In addition, no time-dependent aggrega-
tion was detected in suspensions with elevated salinity (i.e., S 
= 1.8 and 3.6 psu). At the highest salinity value investigated (S 
= 7.2 psu), the colloidal particles gradually aggregated during 
the ~60 minutes following the ASW mixing.
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characterization comes from the near-zero ζ-potential val-
ues that are virtually independent of pH in aqueous solu-
tions. The data in Figure 8 also reveal the pH-dependent
surface charge in the zero salinity chitin suspension. This
charge is derived from the protonation of the amino
group at low pH and deprotonation of the hydroxyl group
at high pH.

The ζ-potential of HA molecules as a function of pH at
two different salinity values characterizes humic acid as
negatively charged colloids (Figure 9). This negative
charge is primarily due to phenolic and carboxylic func-
tional groups. The increase in salinity decreases the nega-
tive ζ-potential value to a certain degree, as would be
expected from the availability of counter-ions.

The ζ-potential values of pure montmorillonite, HA, and
chitin suspensions as a function of salinity (Figure 10)
reveal that the ζ-potential is a very strong function of
salinity in very low salinity suspensions (S ≈ 0 – 2 psu)
with less salinity dependency at higher salinity (S > 2 psu).

Discussion
Previous studies of clay-OM interactions in the context of
dispersion and aggregation mostly focused on the role of

OM in modifying the surface electrostatic properties of the
clays [27-29,33,45]. They showed that the adsorption of
OM on clay surfaces, primarily through surface complex-
ation between clay edge aluminol and OM's acidic func-
tional groups, increased the electronegativity of the clay

Average hydrodynamic diameters (dH) of montmorillonite (8 mg/L) + chitin (4.8 mg/L) suspensions in constantly stirred solutions were measured as a function of time after mixing with artificial seawater (ASW) using dynamic light spectros-copyFigure 7
Average hydrodynamic diameters (dH) of montmo-
rillonite (8 mg/L) + chitin (4.8 mg/L) suspensions in 
constantly stirred solutions were measured as a func-
tion of time after mixing with artificial seawater 
(ASW) using dynamic light spectroscopy. The pH was 
circumneutral. The results show a lack of aggregation in the 
zero salinity suspension. In addition, very little time-depend-
ent aggregation was detected in suspensions with elevated 
salinity (i.e., S = 1.8 and 3.6 psu). At the highest salinity value 
investigated (S = 7.2 psu), the colloidal particles gradually 
aggregated during the ~60 minutes following the ASW mix-
ing.

The ζ-potential of chitin suspension as a function of pH at three discrete salinity valuesFigure 8
The ζ-potential of chitin suspension as a function of 
pH at three discrete salinity values. At zero salinity, z-
potential is a function of pH, with the point of zero charge at 
approximately pHpzc = 5.5. However, when a small amount of 
electrolyte is present in the system, ζ-potential immediately 
becomes insensitive to pH, with its value very close to zero.

The ζ-potential of humic acid (HA) suspension as a function of pH at two discrete salinity valuesFigure 9
The ζ-potential of humic acid (HA) suspension as a 
function of pH at two discrete salinity values. At zero 
salinity, ζ-potential is independent of pH and highly negative, 
indicative of electrostatically stable colloidal suspension. At a 
higher salinity, ζ-potential is less negative but still at ΦZ ≈ -20 
mV.
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surfaces, resulting in increased electrostatic repulsion. The
presence of steric repulsion has been qualitatively men-
tioned, but has not been explicitly quantified. We used the
surface interaction energy model to calculate the contribu-
tion of electrostatic repulsion and van der Waals attrac-
tion to the observed dispersion-aggregation behaviors, in
order to estimate quantitatively the magnitude of other
repulsive forces (e.g., steric repulsion).

Particle interaction in a system that contains montmo-
rillonite particles with OM adsorption on edge surfaces is
controlled partly by electrostatic and Lifshitz-van der
Waals contributions, as well as steric repulsion of OM pol-
ymers [29]. The relative magnitudes of these contribu-
tions determine whether the particles aggregate or remain
dispersed and suspended in solution.

One mechanism for the montmorillonite dispersion is the
electrostatic repulsion [29]. The bare montmorillonite
edges are nearly neutrally charged in contrast to the nega-
tively charged face surfaces. This surface charge difference
leads to the likelihood of face-to-edge aggregation upon
increased salinity (and thus diminished "spillover" EDL)
(Figure 3). However, once HA molecules are adsorbed
onto the edge surfaces, the HA-covered surface will
become negatively charged, even in solutions with mod-
est electrolyte concentrations. This would prevent the
edge-to-face aggregation from occurring easily. Chitin
does not have the same electrostatic effect as it is very close
to neutrally charged in suspensions with any amount of

electrolytes (Figures 8 and 10). If no other forces (i.e.,
steric repulsion) are present, these electrostatic repulsive
forces need to overcome Lifshitz-van der Waals attractive
forces if the particles are to remain in suspension as we
observed in this study.

The electrostatic interaction energy between phases i and

j in aqueous medium per unit area, , is calculated

using the Hogg, Healy and Fuerstenau (HHF) model [47],
based on the assumption of constant, moderate surface
potentials on two infinite flat planes. It should be noted
that this model is appropriate when surface-to-surface dis-

tance H satisfies H ≥ 10 nm.

[48]. Here ε is the dielectric constant of the medium (ε =
78.4 for aqueous medium at 25°C), ε0 is the permittivity

in vacuum, κ is the reciprocal Debye length which is a

function of ionic strength I (i.e.,  (nm-1)), and

subscripts (i, j) represent different surfaces (e.g., f for
montmorillonite face, c for chitin-covered edge, and ha

for HA-covered edge). The surface potential of phase i, ψ0i,

can be reasonably approximated by the zeta potential, ψzi

(mV).

In the following calculations, the ζ-potentials of chitin-
and HA-covered edges, ψzc and ψzha, were estimated to be
equal to that of free-suspending chitin and HA that were
determined experimentally for circumneutral pH as
described above and shown in Figure 10 as a function of
salinity. The data were modeled using the exponential rise
function as functions of salinity (S, psu) as follows:

ψzc = -36.0 + 33.3(1-e-1.36S) (mV) (2)

ψzha = -38.2 + 22.3(1-e-0.626S) (mV) (3)

The ζ-potential of the montmorillonite face surface, ψzf,
was assumed to be equal to the bulk ζ-potential of the
montmorillonite suspension because the edge surface rep-
resents only a small fraction (< 1%) of the net surface area
[48]. It is reported in Figure 10 for circumneutral pH, and
the data were modeled as follows:

ψzf = -38.5 + 26.3(1-e-0.655S) (mV) (4)

Vij
EL

V H ech Hij
EL

i j i j= +( ) −( ) +⎡
⎣

⎤
⎦

ee k
p

y y k y y k0
8

1 20
2

0
2

0 0coth cos

(1)

k = I
0 3082.

The ζ-potential of humic acid (HA), chitin and montmorillon-ite suspensions at circumneutral pH (7 < pH < 7.5) as a func-tion of salinityFigure 10
The ζ-potential of humic acid (HA), chitin and 
montmorillonite suspensions at circumneutral pH (7 
< pH < 7.5) as a function of salinity. Note that the value 
for montmorillonite are averages over different surfaces 
including permanently negative face surfaces and less negative 
(and neutral or even positive in low pH) edge surfaces.
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The Lifshitz-van der Waals contribution, , was calcu-

lated using the following equation [48]:

where Aij is the Hamaker constant corresponding to the
van der Waals interaction between phases i and j in aque-
ous medium. In this case, we assume that the van der
Waals interaction between the montmorillonite face and
the OM-coated edge surfaces is similar to that between the

montmorillonite face and the bare edge, and thus the
value of Aij was taken from the literature to be Afe = 7.3 ×
10-21 J [48].

The values of  and , as well as  +  were

calculated for certain discrete salinity values (i.e., S = 0.3,

1, 3.6, and 7.2 psu) using the ζ-potential values experi-
mentally determined and interpolated at circumneutral
pH (Figure 10), and shown in Figure 11. These results
show that the sum of electrostatic and Lifshitz-van der
Waals forces is constantly negative under the experimental

Vij
LW

V
Aij

H
ij
LW = −

12 2p
(5) Vij

EL Vij
LW Vij

EL Vij
LW

Surface interaction energy calculated from electrostatic interaction (VEL) (i.e., Equation 1) and Lifshitz-van der Waals interac-tion (VLW)(i.e., Equation 5)Figure 11
Surface interaction energy calculated from electrostatic interaction (VEL) (i.e., Equation 1) and Lifshitz-van der 
Waals interaction (VLW)(i.e., Equation 5). The VEL and VLW values are shown individually in the upper figures, whereas the 
net energy values are shown in the lower figures. The net sum of VEL and VLW remains negative throughout the experimental 
conditions used to derive the z-potential (i.e., circumneutral pH at salinity values indicated on figure) except for the interaction 
between face and HA-covered edge at very low salinity (S = 0.4 psu). Net negative surface interaction energy would induce 
aggregation, whereas our observations yielded very little aggregation for S = 3.6 psu and below. On the other hand, aggregation 
was observed at S = 7.2 psu.
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conditions we considered, except for the HA system with
very low salinity (S = 0.4 psu). This negative interaction
energy would cause particles to approach each other and
aggregate. However, montmorillonite did not aggregate in
the HA-containing systems at S < 3.6 psu. Meanwhile,
aggregation was observed at S = 7.2. Consequently, it is
clear that other repulsive forces, such as steric repulsion,
are quantitatively important in these systems in order to
keep particles well dispersed in suspensions with S = 3.6
psu or less.

The magnitude of steric repulsion can be estimated by
comparing the values of VTOTAL (= VEL + VLW) at S = 3.6 and
7.2 psu. At S = 3.6 psu, the steric repulsion was at least as
significant as the negative values of VTOTAL in order to keep
the colloids dispersed. On the other hand, at S = 7.2 psu,
the steric repulsion was exceeded by the negative values of
VTOTAL. It should be noted that the range estimation is
conducted under the assumption that the steric repulsion
is independent of salinity; thus the range is a rough esti-
mate. In reality, the hydrodynamic diameters of polymers
are greater in higher salinity solution due to the polymer
unfolding, and thus the steric repulsive forces may be
greater in higher salinity solutions [49]. Figure 12 shows
the estimated ranges for the magnitude of the additional
repulsion (i.e., steric repulsion) VST for the montmorillo-
nite-HA suspensions determined by bracketing with VTO-

TAL at S = 3.6 and VTOTAL at S = 7.2 psu. The estimate for
montmorillonite-chitin suspensions is not shown but
very similar. The VST values are quantitatively significant,
as their values, even though rough estimates, are in the
same order of magnitudes as the van der Waals attraction.

Conclusion
Rivers erode rocks and soils, and carry the mineral parti-
cles, especially fine-grained clay mineral particles, down
to the estuarine environments. The fate of these particles,
whether they are aggregated and settled rapidly or dis-
persed and remain in suspension for prolonged period of
time for further hydrodynamic transport, is significantly
influenced by the amount of organic matter that is also
suspended in the river water.

Our experimental results indicate that organic macromol-
ecules, which are a major component of many riverine
suspensions in general, prevents clay mineral aggregation
through (1) augmentation of the electrostatic repulsion
between the face and edge surfaces of clay minerals by rap-
idly adsorbing onto the edge surface and increasing its
negative charge; and (2) introduction of steric repulsion.
The surface interaction energy calculations indicate that
the latter (i.e., steric repulsion) is quantitatively more sig-
nificant than the augmentation of electrostatic repulsion.
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