Skip to main content

Table 9 Equilibrium constants for alkaline earth sorption, where Log K0 is the equilibrium constant referenced to a 1 M standard state, Log Kθ is the equilibrium constant referenced to a site-occupancy standard state, Ns is the site density (# nm-2), As is the surface area (m2g-1), and Cs is the solid concentration (g L-1). The site-occupancy standard state assumes reference Ns = 10 sites nm-2 and As = 10 m2g-1.

From: Surface complexation model for strontium sorption to amorphous silica and goethite

Solid

Log K0

Surface Complexation Reaction

Ns

As

Cs

Log Kθ

aAmorphous silca

-2.5

>SOH + H+ = >SOH2+

4.6

277

40

-1.4

 

-5.9

>SOH = >SO- + H+

4.6

277

40

d7.0

 

-1.4

>SOH + H+ + Cl- = >SOH2+_Cl-

4.6

277

40

1.1

 

-7.2

>SOH + Na+ = >SO-_Na+ + H+

4.6

277

40

d0.9

 

-1.5

>SOH + Sr2+ = >SOH...Sr2+

4.6

277

40

-0.4

 

-10.0

4>SOH + Sr2+ = (>SOH)2(>SO-)2_Sr2+ + 2H+

4.6

277

40

d19.2

 

-16.2

4>SOH + Sr2+ + H2O = (>SOH)2(>SO-)2_SrOH+ + 3H+

4.6

277

40

d 27.0

bGoethite

5.6

>SOH + H+ = >SOH2+

16.4

37.7

40

6.4

 

-11.2

>SOH = >SO- + H+

16.4

37.7

40

d 12.0

 

8.9

>SOH + H+ + Cl- = >SOH2+_Cl-

16.4

37.7

40

3.3

 

-9.3

>SOH + Na+ = >SO-_Na+ + H+

16.4

37.7

40

d3.5

 

-16.6

>SOH + Sr2+ + H2O = >SO-_SrOH+ + 2H+

16.4

37.7

40

d10.2

 

-20.7

4>SOH + Sr2+ + H2O = (>SOH)2(>SO-)2_SrOH+ + 3H+

16.4

37.7

40

d31.2

 

-10.0

4>SOH + 2Sr2+ = (>SOH)2(>SO-)2_Sr24+ + 2H+

16.4

37.7

40

d15.9

 

13.8

>SOH + H+ + CO32- = >SO-2_COO-8 + H2O

16.4

37.7

40

13.0

 

13.2

>SOH + H+ + Na+ + CO32- = >SOCOONa + H2O

16.4

37.7

40

12.4

 

18.6

>SOH + 2H+ + CO32- = >SOCOOH + H2O

16.4

37.7

40

17.8

 

6.5

>SOH + CO32- + Sr2+ = >SO0.2-_COOSrOH0.2+

16.4

37.7

40

5.8

 

12.8

>SOH + H+ + CO32- + Sr2+ = >SO0.2-_COOSr1.2+ + H2O

16.4

37.7

40

12.0

cGoethite

5.7

>SOH + H+ = >SOH2+

16.4

27.7

10

6.4

 

-11.3

>SOH = >SO- + H+

16.4

27.7

10

d 12.0

 

9.1

>SOH + H+ + Cl- = >SOH2+_NO3-

16.4

27.7

10

3.3

 

-9.1

>SOH + Na+ = >SO-_Na+ + H+

16.4

27.7

10

d3.5

 

-16.5

>SOH + Sr2+ + H2O = >SO-_SrOH+ + 2H+

16.4

27.7

10

d10.4

 

-18.4

4>SOH + Sr2+ + H2O = (>SOH)2(>SO-)2_SrOH+ + 3H+

16.4

27.7

10

d31.3

 

13.6

>SOH + H+ + CO32- = >SO-.2_COO-.8 + H2O

16.4

27.7

10

13.0

 

13.0

>SOH + H+ + Na+ + CO32- = >SOCOONa + H2O

16.4

27.7

10

12.4

 

18.4

>SOH + 2H+ + CO32- = >SOCOOH + H2O

16.4

27.7

10

17.8

 

6.4

>SOH + CO32- + Sr2+ = >SO0.2-_COOSrOH0.2+

16.4

27.7

10

5.8

 

12.7

>SOH + H+ + CO32- + Sr2+ = >SO0.2-_COOSr1.2 + H2O

16.4

27.7

10

12.0

  1. a. Experiments conducted with and without dissolved carbonate in NaCl solutions, C1 = 105 μF cm-2 and C2 = 0.2 μF cm-2, C1 was predicted for amorphous silica from Equation 82 in Sverjensky [16].
  2. b. Experiments conducted with dissolved carbonate in 0.1 M NaCl solutions, C1 = 97 μF cm-2 and C2 = 0.2 μF cm-2. Mid-range value for C1 was used in goethite because there is no clear explanation for the wide range of reported values [16].
  3. c. Experiments conducted with dissolved carbonate in 0.1 M NaNO3 solutions, C1 = 97 μF cm-2 and C2 = 0.2 μF cm-2. Mid-range value for C1 was used in goethite because there is no clear explanation for the wide range of reported values [16].
  4. d. Mass balance reactions for log Kθ after Sverjensky [16]. All other mass balance reactions are the same for log Kθ and log K0.