Skip to main content

Table 3 Reaction network, Reaction thermodynamics, and kinetics for mineral–water interactions

From: How long do natural waters “remember” release incidents of Marcellus Shale waters: a first order approximation using reactive transport modeling

No.

Minerals

Reactions

log Keq [65]

logk [(mol/m2)/s] [69]

SSAa

 

Kinetic reactions

1

Quartz

SiO2(s) SiO2(aq)

−4.00

−13.41

0.017 [54]

2

K-Feldspar

KAlSi3O8 + 4H+ Al3+ + K+ + 2H2O + 3SiO2(aq)

−0.27

−12.41

0.098 [55]

3

Clinochlore-14A

\( {\text{Mg}}_{5} {\text{Al}}_{2} {\text{Si}}_{3} {\text{O}}_{10} \left( {\text{OH}} \right)_{8} + 8{\text{H}}^{ + } \Leftrightarrow 5{\text{Mg}}^{2 + } + 2{\text{Al}}\left( {\text{OH}} \right)_{4}^{ - } + 3{\text{SiO}}_{2} \left( {\text{aq}} \right) + 4{\text{H}}_{2} {\text{O}} \)

67.24

−12.52

1.10 [56]

4

Daphnite-14A

\( {\text{Fe}}_{5} {\text{Al}}_{2} {\text{Si}}_{3} {\text{O}}_{10} \left( {\text{OH}} \right)_{8} + 8{\text{H}}^{ + } \Leftrightarrow 5{\text{Fe}}^{2 + } + 2{\text{Al}}\left( {\text{OH}} \right)_{4}^{ - } + 3{\text{SiO}}_{2} \left( {\text{aq}} \right) + 4{\text{H}}_{2} {\text{O}} \)

52.28

−12.52

1.10 [56]

5

Muscovite

KAl2(Si3Al)O10(OH)2 + 10H+ K+ + 3Al3+ + 3SiO2(aq) + 6H2O

13.58

−13.55

14.28 [57]

6

Kaolinite

Al2Si2O5(OH)4 + 6H+ 2Al3+ + 5H2O + 2SiO2

6.81

−13.18

14.70 [58]

7

Illite

K0.6Mg0.25Al1.8Al0.5Si3.5O10(OH)2 + 8H+ 0.25 Mg2++0.6K++2.30Al3+ + 3.50SiO2(aq) + 5H2O

9.02

−11.60

65.00 [57]

8

Sericite

KAl2(Si3Al)O10(OH)2 + 10H+ K+ + 3Al3+ + 3SiO2(aq) + 6H2O

13.58

−13.55

57.00 [59]

9

Dolomite

\( {\text{CaMg}}\left( {{\text{CO}}_{3} } \right)_{2} \left( {\text{s}} \right) \Leftrightarrow {\text{Ca}}^{2 + } + {\text{Mg}}^{2 + } + 2{\text{CO}}_{3}^{2 - } \)

−16.70

−7.53

0.25 [60]

10

Calcite

\( {\text{CaCO}}_{3} \left( {\text{s}} \right) \Leftrightarrow {\text{Ca}}^{2 + } + {\text{CO}}_{3}^{2 - } \)

−8.48

−5.81

0.48 [61]

11

Gypsum

\( {\text{CaSO}}_{ 4} \left( {\text{s}} \right) \Leftrightarrow {\text{Ca}}^{ 2+ } + {\text{SO}}_{4}^{{2{ - }}} + 2 {\text{H}}_{ 2} {\text{O}} \)

−4.48

−2.79

7.00 [62]

12

Celestite

\( {\text{SrSO}}_{ 4} \left( {\text{s}} \right) \Leftrightarrow {\text{Sr}}^{ 2+ } + {\text{SO}}_{4}^{2 - } \)

−5.68

1.22 [63]

13

Barite

\( {\text{BaSO}}_{ 4} \left( {\text{s}} \right) \Leftrightarrow {\text{Ba}}^{ 2+ } + {\text{SO}}_{4}^{2 - } \)

−9.97

−7.90

1.47 [61]

14

Gibbsite

Al(OH)3(s) + 3H+ Al3+ + 3H2O

8.11

−11.50

6.50 [64]

No.

Ion exchange

Cation exchange capacity (CEC) [66]

logK [67, 68]

  

(Vanselow)

S aquifer

SG aquifers

1

NaX Na+ + X

5.0 × 10−5 eq/g

3.0 × 10−5 eq/g

0.00

  

2

KX K+ + X

 

−0.69

  

3

CaX 2 Ca2+ + 2X

 

−0.39

  

4

MgX 2 Mg2+ + 2X

 

−0.30

  

5

BaX 2 Ba2+ + 2X

 

−0.45

  

6

SrX 2 Sr2+ + 2X

 

−0.45

  
  1. aSSA values are from the laboratory studies in the literature which are generally observed to be faster than those from the fields [55, 70]