Skip to main content

Table 1 Photochemical reactions of naturally occurring substances

From: A survey of photogeochemistry

Reaction

Descriptor

Facilitators

References

Carbon compounds

Plant material → CO2

(Oxidative) photochemical decomposition (mineralization)

 

[124, 125, 166 (CO2 implied), 167]

Plant material (litter and living foliage) → CO

Photochemical decomposition (mineralization)

 

[125, 168,169,170,171]

plant material (litter) → CH4

(Reductive) photochemical decomposition (mineralization/methanification)

 

[172,173,174]

Plant material (foliage) → CH4

(Reductive) photochemical mineralization

 

[171, 173,174,175,176]

Plant material → ethane, ethene, propene, butane, other hydrocarbons

(Reductive) photochemical decomposition

 

[171, 177]

Plant material → dissolved organic matter

Photochemical decomposition + dissolution

 

[115]

Plant material → biologically more labile compounds

Photochemical priming (encouraging subsequent biotic decomposition)

 

[136, 178, 179]

Solid organic matter → CO2

(Oxidative) photochemical decomposition (mineralization)

Sand

[180]

Soil organic matter → CH4

(Reductive) photochemical decomposition (mineralization/methanification)

 

[181]

Sorbed or particulate organic matter → dissolved organic matter

Photochemical dissolution

 

[115, 182, 183]

Dissolved and colloidal organic matter → amino acids

Photochemical decomposition (depolymerization)

 

[184]

(Nonspecific) decomposition of dissolved organic matter

Photochemical decomposition

No facilitator

Aqueous and solid iron(III) species

[70, 109, 185,186,187]

Dissolved organic matter → CO

(Oxidative) photochemical decomposition (mineralization)

 

[188,189,190, 191]

Dissolved organic matter → CO2

(Oxidative) photochemical decomposition (mineralization)

No facilitator

TiO2

[190, 192,193,194]

Dissolved organic matter → CH4

(Reductive) photochemical decomposition (mineralization/methanification)

 

[195]

Dissolved organic matter → biologically more labile compounds

Photochemical priming (encouraging subsequent biotic decomposition)

 

[134, 135, 196]

Humic substances → humic substances with increased carboxylic acid content

photochemical oxidation + acidification

 

[185]

Dissolved organic matter → organic matter with increased aliphatic content

Photochemical aliphatization

 

[63, 193]

Humic substances → small carboxylic acids; increased hydrophobicity of remaining organic matter

photochemical decomposition + acidification

 

[135, 186]

Humic substances → simple carbonyl compounds (e.g., formaldehyde, acetone, pyruvate)

Photochemical decomposition

 

[189, 197]

Dissolved organic matter → condensed aromatic structures (soluble and particulate)

Photochemical condensation

 

[193]

Carbohydrates and lipids → oxidized products

Photochemical oxidation

With and without ZnO

[198]

(Nonspecific) decomposition of cellulose

Photochemical decomposition

No facilitator

Organic dyes

Fe(III) compounds, ZnO, ZnS, TiO2

[14, 50, 96, 97, 199]

Cellulose → less polymerized cellulose with increased carbonyl and carboxyl content

Photochemical depolymerization + oxidation

 

[96, 200]

(Nonspecific) decomposition of chitosan

Photochemical decomposition

 

[201]

(Nonspecific) decomposition of wool

Photochemical decomposition

 

[99]

(Nonspecific) decomposition of lignin

Photochemical decomposition

No facilitator

TiO2

[98, 202, 203]

Lignin → CH4, ethane

(Reductive) photochemical decomposition

 

[204]

Lignin → quinones

(Oxidative) photochemical decomposition

 

[99, 204, 205]

Lignin → aromatic and aliphatic aldehydes

(Oxidative) photochemical decomposition

 

[206]

Proteins → larger, aggregated proteins e.g., via intermolecular tyrosine dimerization

Photochemical crosslinking

 

[207]

Unconjugated unsaturated lipids → conjugated unsaturated lipids + insoluble material

Photochemical isomerization, condensation

Observed in seawater

[208]

Polyunsaturated lipids → humic substances (proposed reaction)

(Oxidative) photochemical crosslinking

 

[209]

Fatty acids →

CO2, alkenes, aldehydes, ketones, fatty acid dimers

Photochemical oxidation, cleavage,

dimerization

No facilitator

TiO2

[210, 211]

Hydrocarbons e.g., ethane, ethene, propane, butane, paraffin → CO2

Photochemical oxidation

TiO2

[211, 212]

Long-chain alkanes → ketones, alcohols, acids

Photochemical oxidation

Naphthol, xanthone, anthraquinone

[101]

Dienes + NOx → carboxylic acids

Photochemical oxidation

 

[213]

Aromatic compounds + NOx, NO2 , or NO3 → nitrated aromatic compounds

Photochemical nitration

No facilitator

TiO2, Fe2O3

[214,215,216,217,218]

(Nonspecific) decomposition of polycyclic aromatic hydrocarbons

Photochemical decomposition

No facilitator

Algae (live or dead)

TiO2

[138,139,140, 219]

Polycyclic aromatic hydrocarbons → quinones

Photochemical oxidation

Al2O3

[78]

Condensed aromatic compounds (dissolved black carbon) → nonspecific products, CO2

(Oxidative) photochemical decomposition

 

[63, 220, 221]

Soot → oxygen-containing species

Photochemical oxidation

 

[222]

Crude oil → CO2

Photochemical oxidation (mineralization)

Sand containing magnetite and ilmenite

[223]

Amino acids → CO2

Photochemical oxidation (mineralization)

Cu(II) (aq)

[224, 225]

Amino acids and peptides → smaller carboxylic acids, amines, and amides, NH3, CO2

(Oxidative) photochemical decomposition, mineralization

 

[226]

Lysine → pipecolinic acid

ornithine → proline

Photochemical cyclization

HgS, ZnS, CdS

[227, 228]

Phenolic ketones and aldehydes → brown carbon

Photochemical oxidation, oligomerization

 

[155]

Phenol → hydroquinone, catechol → further oxidation products, CO2

Photochemical oxidation

Fe2O3, TiO2

[211, 229, 230]

Decomposition of aqueous phenol, naphthol, methylphenols, methoxyphenols, anilines

Photochemical oxidation

Humic and fulvic acids, flavins

Algae (live or dead)

[219, 231, 232]

Phenols → phenol dimers

Photochemical coupling/dimerization

Fe(III) (aq)

[102]

Phenols → quinones, naphthols, aminonaphthols → naphthoquinones

Photochemical oxidation

No facilitator

NO3

[217, 233, 234]

Quinones → quinone dimers

Photochemical coupling/dimerization

 

[235, 236]

Quinones + benzocyclic olefins → addition products

Photochemical coupling

 

[237]

Ketones → carboxylic acids

Photochemical cleavage + acidification

 

[238,239, 240]

Ketones → CH4, ethane

photochemical reduction

 

[174, 240]

Aromatic ketones → condensed aromatic ring systems

Photochemical condensation

 

[241]

Vicinal diols → ketones, aldehydes, carboxylic acids

Photochemical cleavage + oxidation

Fe(III) porphyrins

[242]

Cinnamic acid → cinnamic acid dimer

Photochemical coupling/dimerization

 

[243]

Acetic acid → CH4 + CO2

Photochemical disproportionation/dismutation

TiO2; α-Fe2O3; Fe2O3 on montmorillonite (in the absence of O2); TiO2, Fe2O3, SrTiO3 plus an electron acceptor

[121, 122, 244]

Acetic acid → CO2, CH4, ethane; methanol, ethanol, propionic acid, other products

Various

α-Fe2O3; TiO2, Fe2O3, SrTiO3, WO3 plus an electron acceptor

[122, 211, 244]

Acetate, terpenes + O2 → organic (hydro)peroxides

Photochemical peroxidation

No facilitator

ZnO, organic sensitizers

[245,246,247]

Unsaturated lipids + O2 → lipid hydroperoxides

Photochemical peroxidation

Chlorophyll

[248, 249]

Propionic acid → ethane + CO2

Butyric acid → propane + CO2

Salicylic acid → phenol + CO2

Photochemical decarboxylation

Fe2O3 alone or on montmorillonite

Algae (live or dead)

[122, 250]

Lactic acid → pyruvic acid + H2

Photochemical oxidation + dehydrogenation

ZnS

[251]

Lactic acid → acetaldehyde + CO2

(Oxidative) photochemical decarboxylation

Aqueous Cu(II) and Fe(III)

[251, 252]

Glucose → CO2

Photochemical oxidation

TiO2

[211]

Oxalic acid → CO2

Photochemical oxidation

TiO2, sand, ash,

α-Fe2O3, γ-Fe2O3,

α-FeOOH, β-FeOOH,

γ-FeOOH, δ-FeOOH

[71, 211, 253, 254]

Tartaric, citric, oxalic, malonic acids → oxidized products

Photochemical oxidation

Ferritin

[255]

Pyruvic acid → pyruvic acid oligomers

Photochemical oligomerization

 

[256]

Salicylic acid → humic-like substances

Photochemical condensation

Accelerated in the presence of algae

[250]

Syringic acid and other methoxybenzoic acids → methanol

Photochemical decomposition

 

[257]

Syringic acid and related compounds + Cl → CH3Cl

Photochemical decomposition + chlorination

 

[257]

Methanol → ethylene glycol + H2

Ethanol → butane-2,3-diol + H2

Photochemical coupling + dehydrogenation

ZnS in the absence of air

[258]

Isoprene → methylthreitol and methylerythritol (aerosols)

Photochemical oxidation

 

[259]

(Specific) plant compounds → compounds toxic to other organisms

Phototoxicity

 

[260, 261]

CO2 → CO, HCOOH, HCHO, CH3OH, CH4

Photochemical reduction (one-carbon products)

Fe(III) oxides, FeCO3, NiCO3, CoCO3, CuCO3, Mn(II) (aq), ZnO, TiO2, ZnS, CdS, ZrO2, WO3, CaFe2O4, BiVO4, hydrous Cu2O, transition metal ions and oxides in zeolites

[30, 31, 33, 262,263,264,265,266,267,268]

CO2 + H2 → CH4

Photochemical reduction

α-Fe2O3 and Zn-Fe oxide in the presence of water, NiO

[269, 270]

CO2 + H2 → CO, HCOOH, CH3OH

Photochemical reduction

α-Fe2O3 and Zn-Fe oxide in the presence of water

[269]

CO2 → HCOOH

Photochemical reduction

Porphyrins, phthalocyanines

Elemental Cu on silicate rocks such as granite and shale

[271, 272]

CO2 → ethanol

CO2 → ethane, ethene, propane, propene

CO2 → tartaric, glyoxylic, oxalic acids

Photochemical reduction (products with more than one carbon)

SiC, ZnS, BiVO4, montmorillonite-modified TiO2

[273,274,275,276,277]

CH4 → HCOOH

CH4 → CO, CO2

Photochemical oxidation

TiO2

[211, 278]

CH4 → ethane + H2

Photochemical coupling + dehydrogenation

SiO2-Al2O3-TiO2

[279]

Nitrogen compounds

Plant foliage → NOx

  

[280]

Plant foliage → N2O

  

[281]

Particulate organic N → dissolved organic N and NH4 +

Photochemical decomposition (dissolution + mineralization)

 

[115]

Dissolved organic N → biologically more labile N

Photochemical priming

 

[282]

Amino acids and other organic N (including biologically recalcitrant organic N) → NH4 +

Photochemical decomposition (mineralization/ammonification)

No facilitator

Organic matter,

Fe2O3, soil

[132, 184, 193, 194, 283,284,285,286]

Humic substances → NO2

(Oxidative) photochemical decomposition (mineralization)

 

[104, 287]

NH3 → NO2

NH3 → NO3

Photochemical oxidation (nitrification)

TiO2, ZnO, Al2O3, SiO2, MnO2, soil

Observed in seawater

[288,289, 290]

NH3 → N2O, N2

Photochemical oxidation

TiO2

[290, 291]

NH4 + + NO2  → N2

urea, protein → [NH4NO2] → N2

Photochemical oxidation + reduction (denitrification)

TiO2, ZnO, Fe2O3, soil

[292, 293]

NH4NO3 → N2O

Photochemical oxidation + reduction (denitrification)

Al2O3

[294]

NOx → NO3

Photochemical oxidation

TiO2

[295, 296]

NO2 → HONO, NO, N2O

Photochemical reduction

TiO2

[296]

NO2  → NO3

Photochemical oxidation

TiO2, ZnO, Fe2O3, WO3

[297]

NO3  → NH3

Photochemical reduction

TiO2 plus electron acceptor

[298]

NO3 or HNO3 → N2O, NO, HONO, NO2

Photochemical reduction (denitrification/renoxification)

Al2O3, TiO2, SiO2,

α-Fe2O3, ZnO, CuCrO2, Na zeolite, sand

Observed in snow

[299,300,301,302,303,304,305]

NO3  → NO2 (+ O2)

Photochemical reduction (+oxidation)

No facilitator

Iron(III) oxide, soil, organic matter; TiO2 plus humic acids

[103, 306,307,308,309]

NO2 → HONO

Photochemical reduction

Humic acids, soot, soil

Observed in ice

[157, 310, 311]

N2O → N2

Photochemical reduction

ZnO, Fe2O3, sand

Humic and fulvic acids

[94, 95, 151, 312]

N2O → N2 + O2

Photochemical dissociation

ZnO, Cu(I) zeolites

[313, 314]

N2 → NH3

Photochemical reduction/(reductive) photochemical fixation

ZnO, Al2O3, Fe2O3, Ni2O3, CoO, CuO, Fe(III) in TiO2, Fe2O3-Fe3O4, MnO2,

Sand, soil

Aqueous suspensions of TiO2, ZnO, CdS, SrTiO3, Ti(III) zeolites

Hydrous iron(III) oxide in the absence of O2

[2, 229, 315,316,317,318,319,320,321]

N2 + H2O → NH3 + O2

Photochemical reduction + oxidation

TiO2 in the absence of O2, α-Fe2O3,

Fe(III)-doped TiO2

[58, 321, 322]

N2 → N2H4

Photochemical reduction

Sand

[2]

N2 + H2O → N2H4 + O2

Photochemical reduction + oxidation

TiO2 in the absence of O2

[322]

N2 + O2 → NO

Photochemical oxidation (oxidative) photochemical fixation

TiO2 in air

[323]

N2 → NO2

N2 → NO3

Photochemical oxidation (oxidative) photochemical fixation

Suspension of ZnO in the absence of O2

Aerated suspension of hydrous iron(III) oxide

TiO2, soil

[320, 324, 325]

N2 + H2O → NO2  + H2

Photochemical oxidation + reduction

ZnO-Fe2O3 under N2

[326]

Metal compounds

Organic complexes of Fe, Al, Co, Ni (aq) → ionic Fe, Al, Co, Ni (aq)

Photochemical decomposition + decomplexation

 

[327, 328]

Organic complexes of Fe, Cu, Cr, Pb, V (aq) → colloidal Fe, Cu, Cr, Pb, V

Photochemical decomposition + precipitation

 

[328]

Organic matter (aq) + iron (aq) → organic matter + iron (s)

Photochemical flocculation

 

[193, 329]

FeOH+ (aq) → FeOOH

Photochemical oxidation

 

[330]

Fe(III) (hydr)oxides (s) →

Fe(II) (aq)

(Reductive) photochemical dissolution of FeOOH + photochemical oxidation of organic matter (if present)

No facilitator

Coprecipitated or dissolved organic matter, HSO3 , montmorillonite

Accelerated in ice

[70, 71, 92, 122, 331,332,333,334,335,336,337,338]

Fe(II) (aq)/Fe(OH)2 + H2O → Fe(III) + H2

Photochemical oxidation + reduction

No facilitator

Chromophores such as chlorophyll

[339, 340]

Fe(III)-carboxylate complexes (aq) → Fe(II) (aq)

Photochemical reduction + decomplexation

 

[66, 70, 341, 342]

Mn(IV) oxide → Mn(II) (aq)

(Reductive) photochemical dissolution

Dissolved organic matter

Accelerated in ice

[337, 343,344,345,346,347]

Mn(II) (aq) → MnOx (x = 1 to 2)

Photochemical oxidation

Organic matter, TiO2

[348, 349]

Cu(II) (aq) → Cu(I)

Photochemical reduction

Amino acids

[224, 225]

Cr(VI) (aq) → Cr(III) (aq)

Photochemical reduction

Ferritin, phenol

[350, 351]

ZnS + H2O → H2S → H2

Photochemical reduction + dissolution

 

[21, 251]

ZnS → Zn(0) + S(0)

Photochemical oxidation + reduction

 

[21]

CdS → Cd(II) + S(0)

Photochemical oxidation

 

[211]

HgS → Hg(II) (aq) + H2S

Photochemical dissolution

 

[228, 352]

HgS → Hg(0) + S(0)

Photochemical oxidation + reduction

Cl

[25]

HgS → [Hg2Cl2 and other intermediates] → HgCl2

Photochemical oxidation, reduction/photochemical dissolution

Cl

[25]

Hg(0) (aq) → Hg(II) (aq)

Photochemical oxidation

 

[352, 353]

Hg(II) (aq) → Hg(0) (aq)

photochemical reduction

Fe(III) species, TiO2, organic matter

Observed in freshwater, seawater, and snow

[352, 354,355,356,357]

Hg(II) (aq) → HgCH3 +

Photochemical methylation

 

[358]

HgCH3 + → Hg(II)

Photochemical demethylation

 

[359, 360]

HgCH3Cl → Hg(II) + Hg(0) + CHCl3 + HCHO

Photochemical demethylation + reduction

 

[361]

Other elements

Plant material → H2

(Reductive) photochemical decomposition

 

[362, 363]

Dissolved organic P → inorganic phosphate

Photochemical decomposition (mineralization)

 

[364]

Phosphate adsorbed to Fe(III) oxides or Fe(III)-organic matter complexes → free phosphate

Photochemical desorption

 

[161, 365, 366]

HS/S2− → H2

Photochemical reduction

CdS, α-Fe2O3

[367, 368]

SO2 → SO4 2−

Photochemical oxidation

TiO2, Fe2O3, ZnO, CdS

[369,370,371,372]

Thiols and SO3 2− → oxidized products

Photochemical oxidation

Ferritin

[255]

Alkyl sulfides + NOx → aldehydes, sulfonic acids, SO2, SO4 2−

Photochemical oxidation

 

[373]

O2 → H2O2

Photochemical reduction

ZnO, TiO2, sand in the presence of organic electron donors

Aqueous Fe(III)-carboxylic acid complexes

Tryptophan and tyrosine

Porphyrins and phthalocyanines

Algae (live or dead)

[34, 107, 246, 298, 374,375, 376]

O2 → H2O

Photochemical reduction

α-Fe2O3

Dissolved Fe and humic substances

(a catalytic cycle)

[123, 377]

H2O → H2

Photochemical reduction

Numerous catalysts, usually in the absence of O2, e.g., TiO2, ZnS, α-Fe2O3, hydrated Cu2O, tungstosilicate on TiO2, Ti(III)-zeolite, graphite oxide

[21, 22, 262, 315, 377,378,379,380,381,382]

H2O → O2

Photochemical oxidation

α-Fe2O3 + Fe(III) (aq), BiVO4 + electron acceptor, Mn2O3, λ-MnO2, Mn3O4, Co3O4 + sensitizer, AgCl, layered double hydroxide minerals

Fe(OH)2+ (aq)

[383,384,385,386,387,388,389,390]

H2O → H2 + O2

Photochemical water splitting (oxidation + reduction)

TiO2, Fe2O3-Fe3O4, Fe2O3-FeS2, Cu2O, ZrO2, Ag zeolite, diverse two-mineral systems

[60, 137, 321, 322, 391,392,393]

As(III) (aq) → As(V) (aq)

Photochemical oxidation

No facilitator

Ferrihydrite, kaolinite

[158, 394, 395]

As4S4 → As4S4 (polymorph)

Photochemical structural (crystal) modification

 

[396]

As2S3 → [As + S] + O2 → As2O3

As4S4 → As2O3

Photochemical oxidation/dissolution

Water

[396, 397]

Volatile organic compounds + NOx → O3

Photochemical oxidation

 

[398]

Cl → Cl 2 (dichloride radical anion)

Photochemical oxidation

Chlorophyll, Hg(II)

[65, 352]

Cl + O3 → Cl2

Photochemical oxidation

 

[399]

NO3  + Br → Br2

Photochemical oxidation

 

[400]

  1. A suggested descriptor is given for each reaction as well as substances reported to facilitate the reaction (if any) and some relevant notes. These facilitating substances also occur naturally, or (in just a few instances) are reasonably similar to something that might occur naturally. About 15% of the studies cited here can be considered field studies, which means that a reaction was observed with both natural sunlight and natural substances as well as under representative environmental conditions, as opposed to the use of artificial light and/or laboratory-prepared equivalents of natural compounds
  2. Note on terminology The term “photochemical” can be used to maintain a clear distinction between abiotic photoreactions and analogous reactions involving light and living organisms (phototrophy). For example, “iron(II) photooxidation” can refer to either a biological process driven by light (photobiological/phototrophic iron(II) oxidation) or a strictly chemical, abiotic process (photochemical iron(II) oxidation). Similarly, an abiotic process that converts water to O2 under the action of light may be described as “photochemical oxidation of water” rather than simply “photooxidation of water” (even though the latter is shorter and often understood to mean a photochemical reaction); this distinguishes it from light-induced biological oxidation of water that might occur simultaneously in the same environment