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Abstract

The geochemical discriminate diagrams help to distinguish the volcanics recovered from different
tectonic settings but these diagrams tend to group the ocean floor basalts (OFB) under one class
i.e., as mid-oceanic ridge basalts (MORB). Hence, a method is specifically needed to identify the
OFB as normal (N-MORB), enriched (E-MORB) and ocean island basalts (OIB).

We have applied Artificial Neural Network (ANN) technique as a supervised Learning Vector
Quantisation (LVQ) to identify the inherent geochemical signatures present in the Central Indian
Ocean Basin (CIOB) basalts. A range of N-MORB, E-MORB and OIB dataset was used for training
and testing of the network. Although the identification of the characters as N-MORB, E-MORB and
OIB is completely dependent upon the training data set for the LVQ, but to a significant extent this
method is found to be successful in identifying the characters within the CIOB basalts. The study
helped to geochemically delineate the CIOB basalts as N-MORB with perceptible imprints of
E-MORB and OIB characteristics in the form of moderately enriched rare earth and incompatible
elements. Apart from the fact that the magmatic processes are difficult to be deciphered, the
architecture performs satisfactorily.

Introduction
Several discrimination diagrams have been proposed to
classify the ocean floor basalts (OFB) into ocean island
basalts (OIB), mid-oceanic ridge basalts (MORB), and
island arc basalts (IAB) that are recovered from different
tectonic settings. These diagrams are constructed by
considering a variety of oxides and/or their ratios, for
instance the triangular diagrams of Ti/100 - Zr - Y.3
by Pearce & Cann [1], Hf/3 - Th - Ta by Wood et al. [2],
TiO2 - MnO - P2O5 × 100 by Mullen [3] and 2Nb -Zr/4 -Y
by Meschede [4]. The model based geochemical studies
classify the MORB into three types such as normal - ,
enriched or plume - and transitional MORB (i.e.,
N-MORB, E or P-MORB and T-MORB, respectively) or
as OIB [5-7]. The discrimination diagrams provide a

broad picture of the type of basalts but it is difficult to
determine the basic characters that are involved in the
geochemical classification of OFB based solely on the
above mentioned elements and oxides. Recently, Sheth
[8] considered several log-ratio and discriminant-analy-
sis based diagrams to evaluate and classify the basalts
into OIB, island arc basalts (IAB) and MORB. The
suggested discriminate diagrams helped to distinguish
the volcanics recovered from different tectonic settings
but group the OFB under one class i.e., as MORB. Hence,
a method is needed to specifically identify the OFB as
N-MORB, E/P-MORB and OIB.

Therefore, other than through conventional discrimina-
tion plots, a methodology is explored for an improved
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technique to characterise and evaluate the various
basaltic characters in a geochemical dataset. We found
that a hybrid Artificial Neural Network (ANN) architec-
ture, also known as Learning Vector Quantisation (LVQ)
which is a supervised network, could better help to
characterise the OFB. As a supervised method, LVQ uses
known target output classifications for each input
pattern of the form. Some instances where LVQ
architecture has being extensively used are for pattern
recognition and seafloor classification [9] and character-
isation of the seafloor sediments [10]. In this commu-
nication we use the LVQ approach in order to determine
the inherent geochemical characters and to classify the
Central Indian Ocean Basin (CIOB) basalts.

Learning Vector Quantisation (LVQ)
Architecture
An ANN is an information processing paradigm that is
inspired by the way biological nervous systems, such as
the brain, process information. The key element of this
pattern is the novel structure which is composed of a large
number of highly interconnected processing elements
(neurons) working in unison to solve specific problems.
An ANN is configured for a specific application, such as
pattern recognition or data classification, through a
learning process. Learning in biological systems involves
adjustments to the synaptic connections that exist
between the neurons. This is true of ANNs as well.

LVQ constitutes a powerful and intuitive method for
adaptive nearest prototype classification. The LVQ
architecture is based on the weight-updating rule to
obtain the characteristics of the learning data. In a feed-
forward ANN (Fig. 1) the data travel one way” from
input to output with no feedback (loops) i.e., the output
of any layer does not affect that same layer. Feed-forward
ANN tends to be a straight forward network that
associates inputs with outputs. LVQ algorithms do not
approximate density functions of class samples as is the
case for Vector Quantisation or Probabilistic Neural
Networks, but directly define the class boundaries based
on prototypes, a nearest-neighbour rule and a ‘winner-
takes-it-all’ paradigm [11]. The LVQ is an algorithm for
learning classifiers from labeled data samples. Instead of
modeling the class densities, it models the discrimina-
tion function defined by the set of labeled codebook
vectors (CVs) and the nearest neighbourhood search
between the codebook and data. During classification, a
data point xi is assigned to a class according to the class
label of the closest CV. The training algorithm involves
an iterative gradient update of the winner unit. The
direction of the gradient update depends on the
correctness of the classification using a nearest neigh-
bourhood rule in Euclidean space. If a datum sample is

correctly classified (i.e., the labels of the winner unit and
the sample are the same), the model vector closest to the
sample is attracted towards the sample; if incorrectly
classified, the sample has a repulsive effect on the model
vector.

The objective of LVQ is to cover the input space of
samples with CVs, each representing a region labeled
with a class. A CV can be considered as a prototype of a
class member, localized in the center of a class or
decision region in the input space. A class can be
represented by an arbitrary number of CVs, but one CV
represents one class only. In terms of neural networks a
LVQ is a feed-forward net with one hidden layer of
neurons, fully connected with the input layer. A CV can
be seen as a hidden neuron (’Kohonen neuron’) [11] or a
weight vector of the weights between all input neurons
and the concerned Kohonen neuron [12], respectively
(Fig. 1). Here ‘weights’ refer to the value of the individual
vector in the matrix. In contrast to the standard LVQ,
where the winner unit (neuron) is defined with a
nearest-neighbour rule in the Euclidean space, we now
have a winner unit which minimizes the negative log
likelihood of the data. Equivalently, this maximum
likelihood unit mc is defined by:

m q(x ; )c k i k= argmax θ (1)

where θk is the weight of CVs.

’Learning’ means modifying the value of CVs in
accordance with adapting rules [11] and therefore,
changing the position of a CV in the input space. Since
class boundaries are built piecewise - linear segments of
the mid-planes between CVs of neighboring classes -
these are adjusted during the learning process. The
tessellation (a tessellation or tiling) of the plane is a

Figure 1
LVQ architecture to show one hidden layer with
Kohonen neurons, adjustable weights between input
and hidden layer and a winner takes it all mechanism.
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collection of figures that fills the plane with no overlaps
and no gaps) induced by the set of CVs is optimal if all
data within one cell indeed belong to the same class.
Classification after learning is based on a presented
sample’s vicinity to the CVs. The classifier assigns the
same class label i.e., the label of the cell’s prototype (the
CV nearest to the sample) to all the samples that fall into
the same tessellation.

The core of the heuristics [11] is based on a distance
function - usually the Euclidean distance is used - for
comparison between an input vector and the class
representatives. The Euclidean distance [d(i)] is calcu-
lated by the equation:

d i d i square x t m tc( ) ( ) ( ( ) ( ))= + − (2)

This distance expresses the degree of similarity between
presented input vector and CVs. A shorter distance
corresponds to a high degree of similarity and a higher
probability for the presented vector to be a member of
the class represented by the nearest CV. Therefore, the
definition of class boundaries by LVQ is strongly
dependent on the distance function, the start positions
of CVs, their adjustment rules and the pre-selection of
distinctive input features. The CV update equation
during learning phase, as defined by the nearest-
neighbour rule, and a datum sample x(t) are fed in the
equation 3 to change the CVs

m t m t t x(t)-m tc c c( ) ( ) ( )[ ( )]+ = ±1 α (3)

where the sign depends on whether the datum sample is
correctly classified (+) or misclassified (-). The learning
rate α(t) ∈ [0, 1] decreases monotonically with time. For
different picks of data samples from our training set, this
procedure is repeated iteratively until a convergence
occurs. Kohonen12 also presents optimized learning-rate
LVQ, where the learning-rate is individually optimized
for each codebook. The learning function (α) for LVQ1
[10-12] uses small values and was optimized to: for right
(0.1/t0.1) and wrong (0.1/t0.06) classifications. During
the training and testing of LVQ1, the randomly
generated weight matrix was tuned for a particular
character in the data set. The LVQ1 network learns all
the possible variations for a particular data set and in
order to obtain the optimum iteration, we continuously
changed the number of iteration steps from a small
number to a large one with continuous observation of
classification of the data. It was noticed that irrespective
of the number of neurons, 30 iterations were optimum
for classifying the CIOB basalts.

The basic LVQ algorithm i.e., LVQ1 rewards correct
classifications by moving the CV towards a presented

input vector, whereas incorrect classifications are pun-
ished by moving the CV in an opposite direction. The
magnitudes of these weight adjustments are controlled
by a learning rate [11] which can be lowered over time so
as to acquire finer movements in a later learning phase.
Improved versions of LVQ1 are Kohonen’s OLVQ1 (with
different learning rates for each CV in order to obtain a
faster convergence) and LVQ2, LVQ2.1 and LVQ3. Since
LVQ1 tends to push CVs away from decision surfaces, it
can be expected to search for a better approximation by
adjustments of two CVs belonging to adjacent classes.
Therefore, in LVQ2 adaptation occurs only in regions
with a few cases of mis-classification in order to achieve
finer and better class boundaries. While LVQ2 allows
adaptation for correctly classifying CVs, LVQ3 leads to an
even more weight adjusting operations due to less
restrictive adaptation rules.

The accuracy of classification and, therefore general-
ization and the speed of learning depends on several
factors. Generally, the developer of a LVQ has to prepare
a learning schedule and a plan as to which LVQ-
algorithm(s) - LVQ1, OLVQ, LVQ2.1 etc. - should be
used with values for the main parametres during the
different training phases. Also, the number of CVs for
each class must be decided in order to reach an high
classification accuracy and generalization while avoiding
under- or over-fitting of the CVs. Additionally, the rules
for stopping the learning process as well as the
initialization method (e.g., random values, values of
randomly selected samples) determine the results.

In this study we have implemented the LVQ1 network to
classify the CIOB basalts without placing emphasis on the
geographical locations of the samples. The LVQ1 algorithm
is such that if the class levels of the input and closest
matching reconstruction vectors are the same, then the
weights are moved closer to the input vector. Conversely, a
mismatch between the two causes the weight tomove away
from the input vector. This concept is termed as “reward-
punishment”. Randomly generated weight matrix is used
as an initial weight distribution for LVQ1. The weight
update equations are implemented on the winning neuron
for each input vector presented, with alternate testing and
training throughout the dataset. The weight updating takes
place following the above equation #3.

The LVQ1 was used as a single layer for classification of
the CIOB basalts and thirty five samples were used to
train the network with every sample containing twenty
one variables. The LVQ1 testing was carried out on
known and classified basalt data set [13-21] so as to
optimize the weight matrix and to store the characters of
the training data. Optimization is a basic step that helps
the network to classify the unknown basalt data.
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To improve the performance of the LVQ1, it was found
that an output neuron grid size of 25 × 1 which
represents the different class is most favorable for this
study. An increase in the number of neurons would lead
to more time to perform a specified work (Table 1). If
the number of classified group increases then to avoid
the overlap, the number of neurons can be increased and
LVQ2 and LVQ3 can be implemented to strengthen the
classification. The LVQ1 architecture was written using
Matlab 6.1 and the program was run on a P4 (1.70 GHz)
computer with 256 MB RAM.

Use of LVQ to Classify Oceanic Basalts
As stated earlier, based on geochemical data the OFB
have been classified as N-, E/P- or T-MORB or OIB.
Recently, Lacassie et al. [22] have used self organizing
map (SOM) based ANN to classify the volcanic rocks.
But it is difficult to determine the inherent geochemical
characters of the samples with respect to N-MORB,
E/P-MORB and OIB, until and unless the network has
pre-defined parametres to separate the geochemical
characters of the data. Therefore, an attempt is made to
introduce the LVQ method for classification and to
unravel discrete geochemical traits of the OFB by using
certain characteristic elemental concentration of these
basalts. In order to classify the OFB we considered one
major oxide (K2O), seven trace (Sc, Rb, Sr, Y, Zr, Nb and
Ba,), six rare earth elements (REE) (La, Ce, Nd, Sm, Eu,
and Yb) and seven elemental ratios (Zr/Nb, Y/Nb, Ba/
Nb, Zr/Y, Sm/Nd, La/Yb and Ce/Y). A reason for utilizing
the above mentioned elements and their ratios is
because these carry the geochemical signatures of the
individual OFB type i.e., N-MORB, E/P-MORB and OIB
[7]. A criterion that we considered while selecting the
samples for training and testing, was that the data should
not be solely from one sampled site in the CIOB.

K2O is a major oxide, which varies systematically in
N-MORB, E/P-MORB and OIB. The trace elements (Nb,
Yb) and REE (La, Ce, Sm and Eu), signify the characters
of the MORB and their ratios typify the different MORB.
The incompatible elements (Zr, Rb, Sr, Ba) characterize
the MORB as well as provide significant information
regarding the nature of the source and magmatic
processes. A systematic increase of incompatible ele-
ments can be seen from N-MORB to OIB (Table 2). The

variation in a few elements could suggest a combination
of geochemical makeup of the MORB and this can be
deciphered by using the LVQ method.

The initial matrix of CVs of unbiased random number of
25 × 21, 50 × 21 and 75 × 21 (Fig. 2) was generated,
saved and subsequently used for training of LVQ1
architecture prior to classification. Figure 3 represents
the trained weight matrix of 25, 50 and 75 neurons for
N-MORB, E-MORB and OIB respectively. To use the LVQ
technique, a separate data set for training and testing was
arranged in a 21 × n pattern for N-MORB, E/P-MORB
and OIB. Here ‘21’ represents the properties of the
basalts in terms of the elements and their ratios and ‘n’
indicates the number of data strips used in the study. The
data which were previously classified as N-MORB, E/P-
MORB and OIB using classical geochemical criteria, were
selected for the study and at the same time the previously
defined data were divided in to two sets, one set for
training of the network and the other set to observe the
performance of the network. During training of the
network, the CVs get updated and classify the basalts
into the different categories. From the network of 25
neurons we selected output neurons 4 to 6, 10 to 12 and
16 to 18 to designate the N-MORB, E/P-MORB and OIB
respectively.

Three different weight-matrixes of CVs were used for the
three types of basalts. The initial weight-matrix of CVs was

Table 1: Time taken by the computer to identify the basalt
characters while using different number of output neurons

25 Neuron 50 Neuron 75 Neuron

Time lapsed (sec) →
N-MORB 0.4530 0.6100 1.6720
E-MORB 0.4220 0.5400 0.5630
OIB 0.4690 0.6410 0.7500

Table 2: The representative MORB values used in this study

N-MORB E-MORB OIB

1 2 3 4 5 6

K2O 0.04 0.11 1.18 0.63 1.28 0.91
Sc 39 46 45.4 40.3 29.5 26.6
Rb 0.47 1.22 31 14 25.9 12.67
Sr 96 103 433 283 848 1119
Y 24 35 32 25 18.75 16
Zr 55 89 222 98 46.21 31.6
Nb 1.06 2.16 17 13 0.95 0.77
Ba 6.06 14.9 375 201 241 429
La 1.99 3.44 22.5 11.3 9 10.64
Ce 6.11 9.64 50.7 23.7 18.79 22.15
Nd 5.96 8.92 25.6 13 13.51 15.15
Sm 2.18 3.10 6.09 3.32 3.54 3.67
Eu 0.81 1.21 2.23 1.13 1.24 1.27
Yb 2.42 3.43 2.81 2.45 1.68 1.34
Zr/Nb 51.8 41.4 13.06 7.54 48.64 41.04
Y/Nb 22.4 16.0 1.88 1.92 19.74 20.78
Ba/Nb 5.74 6.90 22.06 15.46 253.68 557.14
Zr/Y 2.31 2.58 6.94 3.92 2.46 1.98
Sm/Nd 0.37 0.35 0.24 0.26 0.26 0.24
La/Yb 0.82 1 8.01 4.61 5.36 7.94
Ce/Y 0.25 0.28 1.58 0.95 1 1.38

1-2 le Roux et al. [20]
3-4 Humphris & Thompson [15]
5-6 Raos & Crawford [21]
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updated during training of the network and when the
network reached its optimum efficiency the final weight-
matrix was saved and used to classify the unknown data.
In all the cases the network showed a satisfactory result by

classifying the known data between 100% and 95%. Due
to 100% classification of known N-MORB, E/P-MORB
and OIB basalts data, a need did not arise to use the LVQ2
and LVQ3 architectures. LVQ1 architecture with 25
neurons performed very satisfactorily whereas with 50
and 75 neurons the possibility of mis-classification for
E/P-MORB and OIB increased (Fig. 4). As it took less time
for completion of the classification hence an architecture
of 25 neurons was used (Table 1).

To help identify the involved characters in the data set,
filters were designed using the optimized and final
weight-matrix of the CVs. The filters are similar to the
testing part of the LVQ1 architecture. While passing
through the filters the network identifies the individual
characters of the unknown data and this recognition is
dependent upon the available characters of the basalts in
the form of CVs in the weight-matrix.

Classification Of Unknown Basalt Data
Sampling in the CIOB recovered a variety of rocks such
as basalts, ferrobasalts, spilites and pumice clasts [23].
Basalts occur as pillows, large outcrops and as fragments.
Compositionally, the basalts are Normal-MORB (N-
MORB) similar to those from the Mid-Atlantic Ridge and
East Pacific Rise [24]. Ferrobasalts, recovered near
topographic highs and high amplitude magnetic zones,
consist of plagioclase (predominant), sometimes olivine
and frequently small euhedral magnetite and hematite
grains [25]. Spilites, occurring near the Indrani fracture
zone (79°E), show fine to medium grains of albitic
plagioclase, clinopyroxene and olivine while epidote,
hematite, chlorite and ore minerals form minor con-
stituents. Pumices encompass a large field and are
trachyandesite to rhyodacite in composition [26].

The CIOB basalts show considerable ranges in concen-
trations of the incompatible elements (e.g., Zr = 63-
228 Xppm; Nb = 0.95-5 ppm; Ba = ~15-78 ppm; La =
~3-16 ppm) [27,28]. The incompatible elements (Ba, Zr,
Nb, REE) with bulk distribution coefficients less than 1
(D<<1), show systematic enrichments with decreasing
MgO where as the incompatible elements Sr and Sc (D ≥
1), exhibit a scattered distribution. This could be
accounted by the fractionation of olivine ± clinopyrox-
ene and is also supported by the CaO/Al2O3 ratio of the
samples.

In general, the CIOB basalts have distinct incompatible
element ratios e.g., Zr/Nb = 25-125, Y/Nb = 7-63 and
(La/Sm)N = 0.5-1.5 [27,28]. The binary plots of Zr, Rb,
Ce, Sr and Ba show a variable distribution against Nb
(Fig. 5). Zr and Ce show a strong positive correlation
with increasing Nb, whereas Rb and Ba show a scattered

Figure 2
Initial weight matrix of CVs for LVQ architecture of
(i) for 25 neurons (ii) for 50 neurons and (iii) for 75
neurons respectively.
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distribution and Sr shows a narrow trend. Observations
indicate that when compared with N-MORB the CIOB
basalts are relatively enriched in incompatible elements
(Zr = 63-228 ppm, Y = 31-86 ppm) and relatively less
incompatible element abundance than the K-P (K2O and
P2O5) rich basalts from the Deep Sea Drilling Project
(DSDP) Site 215, situated at the eastern margin of the
basin [29,30]. An important aspect of the geochemical
signatures of the CIOB basalts is the significant
fractionation among the highly incompatible elements.
For example, the Ba/La ratio is a factor of ~5 higher than
typical N-MORB, where as the moderately incompatible
element ratio such as Sm/La (0.4 to 1.1) is very close to
the N-MORB [27,28].

The Zr/Nb ratio serves as a useful information to identify
the nature of the MORB. The CIOB basalts have high Zr/
Nb (>25) [28] similar to typical N-MORB (> 30) [7]. The
plots of Ce/Y vs Zr/Nb and La/Yb vs Zr/Nb indicate a
close association of the CIOB basalts with the Southeast
Indian Ridge (Fig. 6a, b). The plot (La/Sm)N vs Zr/Nb
(Fig. 6c) indicates that although the CIOB basalts are
typical N-MORB yet, faint signatures of E/P-type MORB
are noticeable in the mixing relation between N- and P-
types and this may be indicative of a low degree of
partial melting of the source rock. The La/Yb and Ce/Y
ratios (~0.7-2.7 and ~0.15-0.62, respectively) of the
CIOB basalts are close to the chondrite values (La/Yb ≈
1.39 and Ce/Y ≈ 0.39) [31] and indicate that these ratios

Figure 3
Final weight matrix of CVs for 25, 50 and 75 neurons after successful training of the system, respectively. (i), (iv)
and (vii) represent the trained CV for N-MORB (ii), (v) and (viii) represent the trained CV for E-MORB (iii), (vi) and (ix)
represent the trained CV for OIB
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were affected by the fractional crystallization of olivine
and pyroxene. The chondrite normalized REE of the
CIOB basalts also attest to the N-MORB nature of these
basalts ([La/Yb]N of ~1.0) [28]. Interestingly, the CIOB
basalts show enriched LREE and relatively flat HREE
pattern (Fig. 7).

The LVQ analysis of the geochemical data of the CIOB
basalts produced the following results (Fig. 8; Table 3):

1) 57% of the basalts are typical N-MORB

2) 20% of the basalts have both N-MORB and E/P-
MORB characters

3) 11% of the basalts show a combination of N-MORB
and OIB signatures

4) 12% of the basalts have a mixed nature of N-MORB,
E/P-MORB and OIB.

Thus, the CIOB basalts are largely N-MORB but in terms
of certain elemental concentrations a few basalts have

Figure 4
Test result of LVQ after successful training of the architecture to classify N-MORB, E/P-MORB and OIB using
25, 50 and 75 neurons. (a) The use of 25 neurons for identification of different basalts indicates that the network performed
excellently and gives 100% satisfactory result for N-MORB, E/P-MORB and OIB. (b) A 50 neuron architecture shows a 100%
satisfactory result for N-MORB whereas a mis-classification is noticeable for E/P-MORB and OIB. (c) A 75 neuron architecture
performs 100% for N-MORB and OIB while a mis-classification occurs for the E/P-MORB.
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Figure 5
The incompatible elements Zr, Ce, Rb, Ba and Sr show a variable distribution with Nb of the CIOB basalts. The
hatched area represents IOR basalts (data from PETDB http://www.petdb.org/). Note that Zr, Ce and Ba show a relative
depletion whereas Rb shows relative enrichment than the IOR basalts for a given Nb concentration. Sr shows a very close
association with the IOR basalts.
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characteristics of the three basic groups of the OFB. This
indicates the inhomogeneity of the source region
together with variable melting of the source.

Conclusion
It is well recognized that the geochemical study of
basalts together with discrimination plots of selective
elements and their ratios could help to identify the basic
volcanics vis-è-vis their tectonic settings. The purpose of
this work however, was to highlight the development of
a suitable real-time program to help classify the oceanic
basalts on the basis of their discrete geochemical
characters which may not be fully revealed in the
classical discrimination diagrams. In this respect, the
need of soft computational techniques (like ANN) is
useful and faster.

The present study indicates that the supervised LVQ1
architecture performs satisfactorily to identify the geo-
chemical characters in the data and the possibility of
mis-characterization is minimal. Further work could
help to refine the model by a possible reduction in the
number of variables that are needed for the classification
scheme.

Figure 6
(a) The variation of Ce/Y-Zr/Nb ratio of the CIOB
basalts mostly falls in the SEIR domain and indicates
a genetic relation. In comparison, the basalts from
Ninetyeast Ridge and Site 215 [30] do not show any relation
with the CIOB basalts. (b) La/Yb-Zr/Nb ratios show a
clustering and most of the data fall in the SEIR segment
whereas Ninetyeast Ridge and Site 215 [30] again are not
related with the CIOB basalts. (c) (La/Sm)N-Zr/Nb binary
mixing diagram indicates that the CIOB basalts are mainly N-
MORB with some component of E/P-MORB. For comparison
data from Site 215 and Broken Ridge [29,30] have been
plotted.

Figure 7
The REE variation in the CIOB basalts indicates a
moderate enrichment of LREE as compared to the
N-MORB. Representative N- and E-MORB variations are
shown to indicate the enriched pattern of the CIOB basalts
[28]. These patterns are quite similar to the LREE of the E/P-
MORB where as the HREE variation is similar to N-MORB.

Figure 8
A use of the ANN network with 25 neurons indicates
the CIOB basalts to be dominantly N-MORB in
nature but a few samples have a combination of
either E/P-MORB or OIB character or E/P-MORB
and OIB characters along with the N-MORB
character.
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