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A survey of photogeochemistry
Timothy A. Doane*

Abstract 

The participation of sunlight in the natural chemistry of the earth is presented as a unique field of study, from histori-
cal observations to prospects for future inquiry. A compilation of known reactions shows the extent of light-driven 
interactions between naturally occurring components of land, air, and water, and provides the backdrop for an outline 
of the mechanisms of these phenomena. Catalyzed reactions, uncatalyzed reactions, direct processes, and indirect 
processes all operate in natural photochemical transformations, many of which are analogous to well-known biologi-
cal reactions. By overlaying photochemistry and surface geochemistry, complementary approaches can be adopted 
to identify natural photochemical reactions and discern their significance in the environment.
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Background
Photogeochemistry has been defined as the photochem-
istry of Earth-abundant minerals in shaping biogeochem-
istry [1], and this can be extended to the entire interface 
between photochemistry and geochemistry to include 
any chemical reaction induced by sunlight among natu-
rally occurring substances. The term has been used pre-
viously on only several other isolated occasions [2, 3], but 
if existing research is surveyed for studies that fit this def-
inition, an appreciable body of knowledge emerges.

The context of a photogeochemical reaction is implic-
itly the surface of the earth, since that is where sunlight 
is available (ignoring other sources of light such as bio-
luminescence). Reactions may occur among constituents 
of land such as minerals, plant residue, and the organic 
and inorganic components of soil; constituents of surface 
water such as sediment and dissolved organic matter; and 
constituents of the atmospheric boundary layer directly 
influenced by contact with land or water, such as organic 
aerosols, mineral aerosols, and gases. Figure  1 shows 
some examples of photochemical reactions among these 
substances. Sunlight penetrates up to approximately 
0.3  mm in soils and particulate minerals, depending on 
the wavelength of light and the nature of the particles 

[4], and many meters in clear water, depending on the 
concentration of light-absorbing molecules [5, 6]. Light 
of wavelengths less than about 290  nm is completely 
absorbed by the present atmosphere and therefore does 
not reach Earth’s surface [7, 8].

Photogeochemistry describes photochemical reactions 
on Earth that are not facilitated by living organisms. The 
reactions that comprise photosynthesis in plants and 
other organisms, for example, are not included, since the 
physiochemical context for these reactions is installed by 
the organism, and must be maintained in order for the 
reactions to continue (the photoreactions cease if the 
organism dies). However, if a certain substance is pro-
duced by an organism, and the organism dies but the 
substance remains (e.g., plant residue or biogenic mineral 
precipitates), photoreactions involving this substance still 
contribute to photogeochemistry.

History
The most famous example of a photochemical reaction 
involving natural compounds is the production of indi-
goid dyes from the secretions of marine mollusks, known 
since antiquity [9]; the role of sunlight was emphasized 
in a study by William Cole in 1685 [10]. The develop-
ment of modern photochemistry in general was fostered 
by similar adventitious observations of the effect of sun-
light on natural compounds. For example, Hyde Wollas-
ton in 1811 [11] observed that guaiac, a tree resin, rapidly 
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turned green in the air when exposed to sunlight (due 
to photooxidation). Natural photodegradation was also 
known, as described by Berzelius in 1829 [12]: “Light 
fades and destroys the majority of plant colorants. Every 
day we see that of the sun weakening the dyes of our fab-
rics”. This phenomenon was also mentioned by John Wil-
liam Draper in 1845 [13]. Georges Witz in 1883 described 
the degradation of cellulose by sunlight, remarking on 
the influence of air and moisture, and further noted 
that degradation was greatly accelerated by ferric oxide 
[14]. By the end of the 19th century, photodegradation 
of organic matter in natural waters was recognized as a 
universal phenomenon [15]. In addition to degradation, 
other light-induced transformations were also recorded. 
Louis Pasteur described how a dark-colored material is 
produced in cinchona bark under the influence of sun-
light, an observation that he confirmed in the laboratory 
with specific compounds [16], and Hermann Tromms-
dorff [17] and Karl Fritzsche [18] were also among those 
who observed changes in natural organic substances 
when they were illuminated. Many inorganic substances 
were also known to change (e.g., in color or crystal struc-
ture) upon exposure to light [13]. For example, since 
1881 it has been known that zinc sulfide, normally white, 
becomes dark when exposed to sunlight [19]; John Caw-
ley remarked that “I have prepared pigments so sensi-
tive as to be turned almost black when exposed to bright 
sunlight for one or two minutes” [20]. Investigation of 
the light-induced reactions of this compound [21], which 
occurs as a natural mineral, provided some additional 
empirical contributions to photochemistry and the “pho-
tochemical metallurgy” of zinc, and its photocatalytic 

properties are still studied at present [22, 23]. Many 
natural inorganic compounds used throughout the ages 
as pigments in painting also slowly degrade by exposure 
to sunlight; artists like Van Gogh were aware of this [24]. 
Some of these compounds, such as mercury(II) sulfide, 
undergo a number of light-mediated reactions [25] which 
are environmentally relevant.

Around the time of these and other observations, 
experiments increased in an effort to reproduce natural 
processes. The hypothesis of von Baeyer in 1870 [26], in 
which formaldehyde was proposed to be the initial prod-
uct of plant photosynthesis followed by polymerization 
into sugars, inspired numerous attempts to obtain for-
maldehyde from carbon dioxide and water. For example, 
the formation of lower uranium oxides was observed 
upon irradiation of a solution of uranium acetate and car-
bon dioxide, implying the formation of a reducing agent 
assumed to be formaldehyde [27]. Some experiments 
included reducing agents such as hydrogen gas [28], 
and others reportedly detected formaldehyde and other 
products in the absence of additives [29, 30], suggesting 
that reducing power was produced from the decomposi-
tion of water during exposure to light. In addition to this 
main focus on the synthesis of formaldehyde and simple 
sugars, other light-driven reactions were occasionally 
noted, such as the decomposition of formaldehyde and 
subsequent release of methane [28]. Many experiments 
explored the effect of a catalyst in converting light energy 
into chemical energy; some effective “transformers” (as 
they were sometimes called) were similar to naturally 
occurring minerals, including iron(III) oxide or colloidal 
iron(III) hydroxide [30–32], zinc oxide [33], and cobalt, 

Fig. 1 Photogeochemistry is the study of sunlight-induced chemical reactions among substances that are found naturally on Earth’s surface and 
intermingle across its domains. Examples of photochemical reactions are shown that occur in the basic domains of land, air, and water. Reaction 
details and references can be found in Table 1
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copper, nickel, and iron carbonates [30, 33]. By this time, 
interest had spread to other light-induced reactions 
involving naturally occurring materials. These studies 
sometimes reported photoreactions analogous to biologi-
cal processes, such as oxidation of simple carbon com-
pounds [34] or nitrification in soil [35].

Overview of photogeochemical reactions
Table 1 presents a selection of documented photochemi-
cal reactions (with light  >290  nm) among naturally 
occurring substances, ranging from general reactions 
such as mineralization of organic matter to specific reac-
tions such as methylation and demethylation of mercury. 
This compilation is by no means exhaustive, either in 
reactions or references, but illustrates the general scope 
and diversity of abiotic photochemical reactions that may 
occur at the surface of the earth.

Classification of photogeochemical reactions
The same principles that form the foundation of photo-
chemistry can also be used to describe and explain photo-
geochemical reactions. If specific reactions are known, they 
may be distinguished as either photosynthetic reactions, 
photocatalytic reactions, or uncatalyzed reactions. In the 
most general sense, photosynthesis refers to any photo-
chemical reaction for which the change in energy (ΔG) is 
positive. The energy of the products is greater than that of 
the reactants, and therefore the reaction is thermodynami-
cally unfavorable, except through the action of light in con-
junction with a catalyst [36] or a chromophoric system, for 
example, that mimics what occurs in plants [37]. Examples 
of photosynthetic reactions include the production of H2 
and O2 from water and the reaction of CO2 and water to 
form O2 and reduced carbon compounds such as meth-
ane and methanol. Photocatalysis refers to photochemical 
reactions, accelerated by the presence of a catalyst, that 
have a negative change in energy and are therefore thermo-
dynamically favored [36], such as the reaction of organic 
compounds with O2 to form CO2 and water. Finally, uncat-
alyzed photoreactions proceed through the action of light 
alone. For example, many organic compounds absorb light 
and suffer decomposition as a result. Figure  2 depicts a 
simple scheme for classifying photoreactions based on the 
requirement for a catalyst and whether a reaction proceeds 
by a direct or indirect mechanism, as further described 
below. Figure 3 shows some of the processes that operate in 
these reactions, also discussed below.

Catalysis
A catalyst is a substance that increases the rate of a chem-
ical reaction due to a change in mechanism, but does not 
experience any net change itself during the course of the 

reaction [37, 38]. A photocatalyst does this by absorbing 
light, but as described below, other substances that do 
not absorb light may nevertheless catalyze light-induced 
reactions. Strictly speaking, the term catalysis should 
not be used unless it can be shown that the number of 
product molecules produced per number of active sites 
on a substance (the turnover number) is greater than one 
[39]; this is difficult to do in practice, although it is often 
assumed to be true if there is no loss in the activity of the 
substance for an extended period of time [36]. Reactions 
which are not definitively catalytic may be designated 
as assisted photoreactions [36, 38] or photosensitized 
reactions. Photosensitized reactions involve transfer of 
energy from a light-absorbing species (photosensitizer) 
to another, nonabsorbing species, and therefore facilitate 
reaction of this nonabsorbing species [40]. If the photo-
sensitizer remains intact it is effectively a photocatalyst. 
Furthermore, a substance may initially act as a photocata-
lyst in a reaction even if it eventually suffers light-induced 
decomposition. Descriptors such as those given here are 
most applicable when all of the participants in a specific 
reaction can be identified, not just individual reactants or 
products. In contrast, it is hard to classify observations in 
complex matrices such as soil if the complete reactions 
responsible for the observations are not first discerned.

Direct reactions
Photochemical reactions can be further categorized as 
either direct or indirect. Direct reactions involve the sub-
stance that initially absorbs light [41–43] which reacts 
with other substances or is itself changed. Many photo-
chemical reactions on Earth may be directly mediated 
by naturally occurring semiconductors that absorb ultra-
violet and visible radiation. These are mostly transition 
metal oxides and sulfides and include abundant, widely 
distributed minerals such as hematite (Fe2O3), magnetite 
(Fe3O4), goethite and lepidocrocite (FeOOH), anatase and 
rutile (TiO2), pyrolusite (MnO2), pyrite (FeS2) chalcopy-
rite (CuFeS2), and sphalerite (ZnS) [44, 45]. Other types 
of minerals are also known to absorb light and directly 
participate in photoreactions, including silicates such as 
Ag6Si2O7 [46] and phosphates such as Cu2(OH)PO4 [47]. 
Light of energy equal to or greater than the band gap of 
a semiconductor is sufficient to promote electrons from 
the valence band to a higher energy level in the conduc-
tion band, leaving behind electron vacancies or holes 
(Fig.  3a). The excited electron and hole in the semicon-
ductor can then, respectively, reduce and oxidize other 
compounds having appropriate redox potentials relative 
to the potentials of the valence and conduction bands 
[48]. The band gaps and absolute energy levels of many 
minerals are suitable, in theory, for a diverse array of 
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te

d 
un

sa
tu

ra
te

d 
lip

id
s 
→

 c
on

ju
ga

te
d 

un
sa

tu
ra

te
d 

lip
id

s 
+

 in
so

lu
bl

e 
m

at
er

ia
l

Ph
ot

oc
he

m
ic

al
 is

om
er

iz
at

io
n,

 c
on

de
ns

at
io

n
O

bs
er

ve
d 

in
 s

ea
w

at
er

[2
08

]

Po
ly

un
sa

tu
ra

te
d 

lip
id

s 
→

 h
um

ic
 s

ub
st

an
ce

s 
 

(p
ro

po
se

d 
re

ac
tio

n)
(O

xi
da

tiv
e)

 p
ho

to
ch

em
ic

al
 c

ro
ss

lin
ki

ng
[2

09
]

Fa
tt

y 
ac

id
s 
→

CO
2, 

al
ke

ne
s, 

al
de

hy
de

s, 
ke

to
ne

s, 
fa

tt
y 

ac
id

 d
im

er
s

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n,

 c
le

av
ag

e,
di

m
er

iz
at

io
n

N
o 

fa
ci

lit
at

or
Ti

O
2

[2
10

, 2
11

]

H
yd

ro
ca

rb
on

s 
e.

g.
, e

th
an

e,
 e

th
en

e,
 p

ro
pa

ne
, b

ut
an

e,
 

pa
ra

ffi
n 
→

 C
O

2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

Ti
O

2
[2

11
, 2

12
]

Lo
ng

-c
ha

in
 a

lk
an

es
 →

 k
et

on
es

, a
lc

oh
ol

s, 
ac

id
s

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

N
ap

ht
ho

l, 
xa

nt
ho

ne
, a

nt
hr

aq
ui

no
ne

[1
01

]

D
ie

ne
s 
+

 N
O

x →
 c

ar
bo

xy
lic

 a
ci

ds
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[2

13
]

A
ro

m
at

ic
 c

om
po

un
ds

 +
 N

O
x, 

N
O

2−
, o

r N
O

3−
 →

 
ni

tr
at

ed
 a

ro
m

at
ic

 c
om

po
un

ds
Ph

ot
oc

he
m

ic
al

 n
itr

at
io

n
N

o 
fa

ci
lit

at
or

Ti
O

2, 
Fe

2O
3

[2
14

–2
18

]

(N
on

sp
ec

ifi
c)

 d
ec

om
po

si
tio

n 
of

 p
ol

yc
yc

lic
 a

ro
m

at
ic

 
hy

dr
oc

ar
bo

ns
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n
N

o 
fa

ci
lit

at
or

A
lg

ae
 (l

iv
e 

or
 d

ea
d)

Ti
O

2

[1
38

–1
40

, 2
19

]

Po
ly

cy
cl

ic
 a

ro
m

at
ic

 h
yd

ro
ca

rb
on

s 
→

 q
ui

no
ne

s
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
A

l 2O
3

[7
8]

Co
nd

en
se

d 
ar

om
at

ic
 c

om
po

un
ds

 (d
is

so
lv

ed
 b

la
ck

 
ca

rb
on

) →
 n

on
sp

ec
ifi

c 
pr

od
uc

ts
, C

O
2

(O
xi

da
tiv

e)
 p

ho
to

ch
em

ic
al

 d
ec

om
po

si
tio

n
[6

3,
 2

20
, 2

21
]

So
ot

 →
 o

xy
ge

n-
co

nt
ai

ni
ng

 s
pe

ci
es

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

[2
22

]

C
ru

de
 o

il 
→

 C
O

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
(m

in
er

al
iz

at
io

n)
Sa

nd
 c

on
ta

in
in

g 
m

ag
ne

tit
e 

an
d 

ilm
en

ite
[2

23
]

A
m

in
o 

ac
id

s 
→

 C
O

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
(m

in
er

al
iz

at
io

n)
Cu

(II
) (

aq
)

[2
24

, 2
25

]
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m
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 →
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m
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r c
ar
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id

s, 
am

in
es

, a
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m

id
es

, N
H

3, 
CO

2

(O
xi

da
tiv

e)
 p

ho
to

ch
em

ic
al

 d
ec

om
po

si
tio

n,
 m

in
er

-
al

iz
at

io
n

[2
26

]

Ly
si

ne
 →

 p
ip

ec
ol

in
ic

 a
ci

d
or

ni
th

in
e 
→

 p
ro

lin
e

Ph
ot

oc
he

m
ic

al
 c

yc
liz

at
io

n
H

gS
, Z

nS
, C

dS
[2

27
, 2

28
]

Ph
en

ol
ic

 k
et

on
es

 a
nd

 a
ld

eh
yd

es
 →

 b
ro

w
n 

ca
rb

on
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n,
 o

lig
om

er
iz

at
io

n
[1

55
]

Ph
en

ol
 →

 h
yd

ro
qu

in
on

e,
 c

at
ec

ho
l →

 fu
rt

he
r o

xi
da

-
tio

n 
pr

od
uc

ts
, C

O
2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

Fe
2O

3, 
Ti

O
2

[2
11

, 2
29

, 2
30

]

D
ec

om
po

si
tio

n 
of

 a
qu

eo
us

 p
he

no
l, 

na
ph

th
ol

, m
et

h-
yl

ph
en

ol
s, 

m
et

ho
xy

ph
en

ol
s, 

an
ili

ne
s

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

H
um

ic
 a

nd
 fu

lv
ic

 a
ci

ds
, fl

av
in

s
A

lg
ae

 (l
iv

e 
or

 d
ea

d)
[2
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, 2
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, 2
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]

Ph
en

ol
s 
→

 p
he

no
l d

im
er

s
Ph

ot
oc

he
m

ic
al

 c
ou

pl
in

g/
di

m
er

iz
at

io
n

Fe
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I) 
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q)
[1
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]

Ph
en

ol
s 
→

 q
ui

no
ne

s, 
na

ph
th

ol
s, 
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in

on
ap

h-
th

ol
s 
→

 n
ap

ht
ho

qu
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on
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Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

N
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fa
ci

lit
at

or
N

O
3−

[2
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, 2
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, 2
34

]

Q
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no
ne

s 
→
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ui
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ne

 d
im

er
s

Ph
ot

oc
he

m
ic

al
 c

ou
pl

in
g/

di
m

er
iz

at
io

n
[2

35
, 2

36
]

Q
ui

no
ne

s 
+

 b
en

zo
cy

cl
ic

 o
le

fin
s 
→

 a
dd

iti
on

 p
ro

d-
uc

ts
Ph

ot
oc

he
m

ic
al

 c
ou

pl
in

g
[2

37
]

Ke
to

ne
s 
→

 c
ar

bo
xy

lic
 a

ci
ds

Ph
ot

oc
he

m
ic

al
 c

le
av

ag
e 
+

 a
ci

di
fic

at
io

n
[2

38
–2

40
]

Ke
to

ne
s 
→

 C
H

4, 
et

ha
ne

ph
ot

oc
he

m
ic

al
 re

du
ct

io
n

[1
74

, 2
40

]

A
ro

m
at

ic
 k

et
on

es
 →

 c
on

de
ns

ed
 a

ro
m

at
ic

 ri
ng

 
sy

st
em

s
Ph

ot
oc

he
m

ic
al

 c
on

de
ns

at
io

n
[2

41
]

Vi
ci

na
l d

io
ls

 →
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et
on

es
, a

ld
eh

yd
es

, c
ar

bo
xy

lic
 a

ci
ds

Ph
ot

oc
he

m
ic

al
 c

le
av

ag
e 
+

 o
xi

da
tio

n
Fe

(II
I) 

po
rp

hy
rin

s
[2

42
]

C
in

na
m

ic
 a

ci
d 
→

 c
in

na
m

ic
 a

ci
d 

di
m

er
Ph

ot
oc

he
m

ic
al

 c
ou

pl
in

g/
di

m
er

iz
at

io
n

[2
43

]

A
ce

tic
 a

ci
d 
→

 C
H

4 +
 C

O
2

Ph
ot

oc
he

m
ic

al
 d

is
pr

op
or

tio
na

tio
n/

di
sm

ut
at

io
n

Ti
O

2; 
α-

Fe
2O

3; 
Fe

2O
3 o

n 
m

on
tm

or
ill

on
ite

 (i
n 

th
e 

ab
se

nc
e 

of
 O

2)
; T

iO
2, 

Fe
2O

3, 
Sr

Ti
O

3 p
lu

s 
an

 e
le

ct
ro

n 
ac

ce
pt

or

[1
21

, 1
22

, 2
44

]

A
ce

tic
 a

ci
d 
→

 C
O

2, 
C

H
4, 

et
ha

ne
; m

et
ha

no
l, 

et
ha

no
l, 

pr
op

io
ni

c 
ac

id
, o

th
er

 p
ro

du
ct

s
Va

rio
us

α-
Fe

2O
3; 

Ti
O

2, 
Fe

2O
3, 

Sr
Ti

O
3, 

W
O

3 p
lu

s 
an

 e
le

ct
ro

n 
ac

ce
pt

or
[1

22
, 2

11
, 2

44
]

A
ce

ta
te

, t
er

pe
ne

s 
+

 O
2 →

 o
rg

an
ic

 (h
yd

ro
)p

er
ox

id
es

Ph
ot

oc
he

m
ic

al
 p

er
ox

id
at

io
n

N
o 

fa
ci

lit
at

or
Zn

O
, o

rg
an

ic
 s

en
si

tiz
er

s
[2

45
–2

47
]

U
ns

at
ur

at
ed

 li
pi

ds
 +

 O
2 →

 li
pi

d 
hy

dr
op

er
ox

id
es

Ph
ot

oc
he

m
ic

al
 p

er
ox

id
at

io
n

C
hl

or
op

hy
ll

[2
48

, 2
49

]

Pr
op

io
ni

c 
ac

id
 →

 e
th

an
e 
+

 C
O

2
Bu

ty
ric

 a
ci

d 
→

 p
ro

pa
ne

 +
 C

O
2

Sa
lic

yl
ic

 a
ci

d 
→

 p
he

no
l +

 C
O

2

Ph
ot

oc
he

m
ic

al
 d

ec
ar

bo
xy

la
tio

n
Fe

2O
3 a

lo
ne

 o
r o

n 
m

on
tm

or
ill

on
ite

A
lg

ae
 (l

iv
e 

or
 d

ea
d)

[1
22

, 2
50

]

La
ct

ic
 a

ci
d 
→

 p
yr

uv
ic

 a
ci

d 
+

 H
2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 
+

 d
eh

yd
ro

ge
na

tio
n

Zn
S

[2
51

]

La
ct

ic
 a

ci
d 
→

 a
ce

ta
ld

eh
yd

e 
+

 C
O

2
(O

xi
da

tiv
e)

 p
ho

to
ch

em
ic

al
 d

ec
ar

bo
xy

la
tio

n
A

qu
eo

us
 C

u(
II)

 a
nd

 F
e(

III
)

[2
51

, 2
52

]

G
lu

co
se

 →
 C

O
2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

Ti
O

2
[2

11
]

O
xa

lic
 a

ci
d 
→

 C
O

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
Ti

O
2, 

sa
nd

, a
sh

,
α-

Fe
2O

3, 
γ-

Fe
2O

3,
α-

Fe
O

O
H

, β
-F

eO
O

H
,

γ-
Fe

O
O

H
, δ

-F
eO

O
H

[7
1,

 2
11

, 2
53

, 2
54

]
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, c
itr

ic
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 →
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od
uc
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Ph

ot
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he
m
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al
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xi

da
tio

n
Fe
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n
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55
]

Py
ru

vi
c 

ac
id

 →
 p
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uv

ic
 a

ci
d 

ol
ig

om
er

s
Ph

ot
oc

he
m

ic
al

 o
lig

om
er

iz
at

io
n
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]

Sa
lic

yl
ic

 a
ci

d 
→
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um

ic
-li

ke
 s

ub
st

an
ce

s
Ph

ot
oc

he
m

ic
al

 c
on

de
ns

at
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n
A
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el

er
at

ed
 in
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es

en
ce
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f a
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ae

[2
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]

Sy
rin

gi
c 

ac
id

 a
nd

 o
th

er
 m

et
ho

xy
be

nz
oi

c 
ac

id
s 
→

 m
et

ha
no

l
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n
[2

57
]

Sy
rin

gi
c 

ac
id

 a
nd

 re
la

te
d 

co
m

po
un

ds
 +

 C
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 →
 C

H
3C

l
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n 
+

 c
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or
in
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]

M
et
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no

l →
 e

th
yl

en
e 
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ol
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 H
2
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ha

no
l →
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ut
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 +
 H

2

Ph
ot

oc
he
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al
 c

ou
pl

in
g 
+

 d
eh
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ro

ge
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tio
n
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in
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of

 a
ir

[2
58

]
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op

re
ne

 →
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l a
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hy
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th
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he
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al
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 c
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 c

om
po

un
ds

 to
xi

c 
to

 
ot

he
r o

rg
an

is
m

s
Ph

ot
ot

ox
ic

ity
[2

60
, 2

61
]

CO
2 →

 C
O

, H
CO

O
H

, H
C

H
O

, C
H

3O
H

, C
H

4
Ph

ot
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 re
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3, 

N
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nO
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2, 
Zn

S,
 C

dS
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2O
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ra
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et
al
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es
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]
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 C
H
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ot
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 re
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]
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 C
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al
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 o
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]
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]
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2 →
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2 →

 e
th
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 p
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ne

, p
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pe
ne
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2 →
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]

C
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4 →
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O
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C

H
4 →

 C
O

, C
O

2
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ot

oc
he

m
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al
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xi
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O
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]
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ot
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 c
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 d
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2
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]

N
itr

og
en

 c
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po
un

ds

Pl
an

t f
ol
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ge

 →
 N
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x

[2
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]
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an

t f
ol
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ge

 →
 N

2O
[2

81
]
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e 
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c 

N
 →

 d
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N
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 d
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at
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]
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 →
 b
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ot
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 p
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]
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ot
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 (i
nc

lu
di

ng
  

bi
ol

og
ic

al
ly

 re
ca

lc
itr

an
t o

rg
an

ic
 N

) →
 N

H
4+

Ph
ot

oc
he

m
ic

al
 d

ec
om

po
si

tio
n 

(m
in

er
al

iz
at

io
n/

am
m

on
ifi

ca
tio

n)
N

o 
fa

ci
lit

at
or

O
rg

an
ic

 m
at

te
r,

Fe
2O

3, 
so

il

[1
32

, 1
84

, 1
93

, 1
94

, 2
83

–2
86

]

H
um

ic
 s

ub
st

an
ce

s 
→

 N
O

2−
(O

xi
da

tiv
e)

 p
ho

to
ch

em
ic

al
 d

ec
om

po
si

tio
n 

 
(m

in
er

al
iz

at
io

n)
[1

04
, 2

87
]



Page 8 of 24Doane  Geochem Trans  (2017) 18:1 

Ta
bl

e 
1 

co
nt

in
ue

d

Re
ac

tio
n

D
es

cr
ip

to
r

Fa
ci

lit
at

or
s

Re
fe

re
nc

es

N
H

3 →
 N

O
2−

N
H

3 →
 N

O
3−

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 

(n
itr

ifi
ca

tio
n)

Ti
O

2, 
Zn

O
, A

l 2O
3, 

Si
O

2, 
M

nO
2, 

so
il

O
bs

er
ve

d 
in

 s
ea

w
at

er
[2

88
–2

90
]

N
H

3 →
 N

2O
, N

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
Ti

O
2

[2
90

, 2
91

]

N
H

4+
 +

 N
O

2−
 →

 N
2

ur
ea

, p
ro

te
in

 →
 [N

H
4N

O
2]

 →
 N

2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 
+

 re
du

ct
io

n 
 

(d
en

itr
ifi

ca
tio

n)
Ti

O
2, 

Zn
O

, F
e 2O

3, 
so

il
[2

92
, 2

93
]

N
H

4N
O

3 →
 N

2O
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
+

 re
du

ct
io

n 
 

(d
en

itr
ifi

ca
tio

n)
A

l 2O
3

[2
94

]

N
O

x →
 N

O
3−

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

Ti
O

2
[2

95
, 2

96
]

N
O

2 →
 H

O
N

O
, N

O
, N

2O
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Ti

O
2

[2
96

]

N
O

2−
 →

 N
O

3−
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
Ti

O
2, 

Zn
O

, F
e 2O

3, 
W

O
3

[2
97

]

N
O

3−
 →

 N
H

3
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Ti

O
2 p

lu
s 

el
ec

tr
on

 a
cc

ep
to

r
[2

98
]

N
O

3−
 o

r H
N

O
3 →

 N
2O

, N
O

, H
O

N
O

, N
O

2
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n 
(d

en
itr

ifi
ca

tio
n/

 
re

no
xi

fic
at

io
n)

A
l 2O

3, 
Ti

O
2, 

Si
O

2,
α-

Fe
2O

3, 
Zn

O
, C

uC
rO

2, 
N

a 
ze

ol
ite

, s
an

d
O

bs
er

ve
d 

in
 s

no
w

[2
99

–3
05

]

N
O

3−
 →

 N
O

2−
 (+

 O
2)

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n 

(+
ox

id
at

io
n)

N
o 

fa
ci

lit
at

or
Iro

n(
III

) o
xi

de
, s

oi
l, 

or
ga

ni
c 

m
at

te
r; 

Ti
O

2 p
lu

s 
hu

m
ic

 
ac

id
s

[1
03

, 3
06

–3
09

]

N
O

2 →
 H

O
N

O
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
H

um
ic

 a
ci

ds
, s

oo
t, 

so
il

O
bs

er
ve

d 
in

 ic
e

[1
57

, 3
10

, 3
11

]

N
2O

 →
 N

2
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Zn

O
, F

e 2O
3, 

sa
nd

H
um

ic
 a

nd
 fu

lv
ic

 a
ci

ds
[9

4,
 9

5,
 1

51
, 3

12
]

N
2O

 →
 N

2 +
 O

2
Ph

ot
oc

he
m

ic
al

 d
is

so
ci

at
io

n
Zn

O
, C

u(
I) 

ze
ol

ite
s

[3
13

, 3
14

]

N
2 →

 N
H

3
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n/
(re

du
ct

iv
e)

 p
ho

to
ch

em
ic

al
 

fix
at

io
n

Zn
O

, A
l 2O

3, 
Fe

2O
3, 

N
i 2O

3, 
Co

O
, C

uO
, F

e(
III

) i
n 

Ti
O

2, 
Fe

2O
3-

Fe
3O

4, 
M

nO
2,

Sa
nd

, s
oi

l
A

qu
eo

us
 s

us
pe

ns
io

ns
 o

f T
iO

2, 
Zn

O
, C

dS
, S

rT
iO

3, 
Ti

(II
I) 

ze
ol

ite
s

H
yd

ro
us

 ir
on

(II
I) 

ox
id

e 
in

 th
e 

ab
se

nc
e 

of
 O

2

[2
, 2

29
, 3

15
–3

21
]

N
2 +

 H
2O

 →
 N

H
3 +

 O
2

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n 
+

 o
xi

da
tio

n
Ti

O
2 i

n 
th

e 
ab

se
nc

e 
of

 O
2, 

α-
Fe

2O
3,

Fe
(II

I)-
do

pe
d 

Ti
O

2

[5
8,

 3
21

, 3
22

]

N
2 →

 N
2H

4
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Sa

nd
[2

]

N
2 +

 H
2O

 →
 N

2H
4 +

 O
2

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n 
+

 o
xi

da
tio

n
Ti

O
2 i

n 
th

e 
ab

se
nc

e 
of

 O
2

[3
22

]

N
2 +

 O
2 →

 N
O

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 

(o
xi

da
tiv

e)
 p

ho
to

ch
em

ic
al

 
fix

at
io

n
Ti

O
2 i

n 
ai

r
[3

23
]

N
2 →

 N
O

2−

N
2 →

 N
O

3−
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
(o

xi
da

tiv
e)

 p
ho

to
ch

em
ic

al
 

fix
at

io
n

Su
sp

en
si

on
 o

f Z
nO

 in
 th

e 
ab

se
nc

e 
of

 O
2

A
er

at
ed

 s
us

pe
ns

io
n 

of
 h

yd
ro

us
 ir

on
(II

I) 
ox

id
e

Ti
O

2, 
so

il

[3
20

, 3
24

, 3
25

]

N
2 +

 H
2O

 →
 N

O
2−

 +
 H

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
+

 re
du

ct
io

n
Zn

O
-F

e 2O
3 u

nd
er

 N
2

[3
26

]

M
et

al
 c

om
po

un
ds

O
rg

an
ic

 c
om

pl
ex

es
 o

f F
e,

 A
l, 

Co
, N

i (
aq

) →
 io

ni
c 

Fe
, 

A
l, 

Co
, N

i (
aq

)
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n 
+

 d
ec

om
pl

ex
at

io
n

[3
27

, 3
28

]



Page 9 of 24Doane  Geochem Trans  (2017) 18:1 

Ta
bl

e 
1 

co
nt

in
ue

d

Re
ac

tio
n

D
es

cr
ip

to
r

Fa
ci

lit
at

or
s

Re
fe

re
nc

es

O
rg

an
ic

 c
om

pl
ex

es
 o

f F
e,

 C
u,

 C
r, 

Pb
, V

 (a
q)

 →
 c

ol
-

lo
id

al
 F

e,
 C

u,
 C

r, 
Pb

, V
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n 
+

 p
re

ci
pi

ta
tio

n
[3

28
]

O
rg

an
ic

 m
at

te
r (

aq
) +

 ir
on

 (a
q)

 →
  

or
ga

ni
c 

m
at

te
r +

 ir
on

 (s
)

Ph
ot

oc
he

m
ic

al
 fl

oc
cu

la
tio

n
[1

93
, 3

29
]

Fe
O

H
+

 (a
q)

 →
 F

eO
O

H
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[3

30
]

Fe
(II

I) 
(h

yd
r)o

xi
de

s 
(s

) →
Fe

(II
) (

aq
)

(R
ed

uc
tiv

e)
 p

ho
to

ch
em

ic
al

 d
is

so
lu

tio
n 

of
 

Fe
O

O
H

 +
 p

ho
to

ch
em

ic
al

 o
xi

da
tio

n 
of

 o
rg

an
ic

 
m

at
te

r (
if 

pr
es

en
t)

N
o 

fa
ci

lit
at

or
Co

pr
ec

ip
ita

te
d 

or
 d

is
so

lv
ed

 o
rg

an
ic

 m
at

te
r, 

H
SO

3−
, 

m
on

tm
or

ill
on

ite
A

cc
el

er
at

ed
 in

 ic
e

[7
0,

 7
1,

 9
2,

 1
22

, 3
31

–3
38

]

Fe
(II

) (
aq

)/
Fe

(O
H

) 2 +
 H

2O
 →

 F
e(

III
) +

 H
2

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 
+

 re
du

ct
io

n
N

o 
fa

ci
lit

at
or

C
hr

om
op

ho
re

s 
su

ch
 a

s 
ch

lo
ro

ph
yl

l
[3

39
, 3

40
]

Fe
(II

I)-
ca

rb
ox

yl
at

e 
co

m
pl

ex
es

 (a
q)

 →
 F

e(
II)

 (a
q)

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n 
+

 d
ec

om
pl

ex
at

io
n

[6
6,

 7
0,

 3
41

, 3
42

]

M
n(

IV
) o

xi
de

 →
 M

n(
II)

 (a
q)

(R
ed

uc
tiv

e)
 p

ho
to

ch
em

ic
al

 d
is

so
lu

tio
n

D
is

so
lv

ed
 o

rg
an

ic
 m

at
te

r
A

cc
el

er
at

ed
 in

 ic
e

[3
37

, 3
43

–3
47

]

M
n(

II)
 (a

q)
 →

 M
nO

x (
x 
=

 1
 to

 2
)

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

O
rg

an
ic

 m
at

te
r, 

Ti
O

2
[3

48
, 3

49
]

Cu
(II

) (
aq

) →
 C

u(
I)

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n

A
m

in
o 

ac
id

s
[2

24
, 2

25
]

C
r(

VI
) (

aq
) →

 C
r(I

II)
 (a

q)
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Fe

rr
iti

n,
 p

he
no

l
[3

50
, 3

51
]

Zn
S 
+

 H
2O

 →
 H

2S
 →

 H
2

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n 
+

 d
is

so
lu

tio
n

[2
1,

 2
51

]

Zn
S 
→

 Z
n(

0)
 +

 S
(0

)
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n 
+

 re
du

ct
io

n
[2

1]

Cd
S 
→

 C
d(

II)
 +

 S
(0

)
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[2

11
]

H
gS

 →
 H

g(
II)

 (a
q)

 +
 H

2S
Ph

ot
oc

he
m

ic
al

 d
is

so
lu

tio
n

[2
28

, 3
52

]

H
gS

 →
 H

g(
0)

 +
 S

(0
)

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 
+

 re
du

ct
io

n
C

l−
[2

5]

H
gS

 →
 [H

g 2C
l 2 a

nd
 o

th
er

 in
te

rm
ed

ia
te

s]
 →

 H
gC

l 2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n,
 re

du
ct

io
n/

 
ph

ot
oc

he
m

ic
al

 d
is

so
lu

tio
n

C
l−

[2
5]

H
g(

0)
 (a

q)
 →

 H
g(

II)
 (a

q)
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[3

52
, 3

53
]

H
g(

II)
 (a

q)
 →

 H
g(

0)
 (a

q)
ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Fe

(II
I) 

sp
ec

ie
s, 

Ti
O

2, 
or

ga
ni

c 
m

at
te

r
O

bs
er

ve
d 

in
 fr

es
hw

at
er

, s
ea

w
at

er
, a

nd
 s

no
w

[3
52

, 3
54

–3
57

]

H
g(

II)
 (a

q)
 →

 H
gC

H
3+

Ph
ot

oc
he

m
ic

al
 m

et
hy

la
tio

n
[3

58
]

H
gC

H
3+

 →
 H

g(
II)

Ph
ot

oc
he

m
ic

al
 d

em
et

hy
la

tio
n

[3
59

, 3
60

]

H
gC

H
3C

l →
 H

g(
II)

 +
 H

g(
0)

 +
 C

H
C

l 3 +
 H

C
H

O
Ph

ot
oc

he
m

ic
al

 d
em

et
hy

la
tio

n 
+

 re
du

ct
io

n
[3

61
]

O
th

er
 e

le
m

en
ts

Pl
an

t m
at

er
ia

l →
 H

2
(R

ed
uc

tiv
e)

 p
ho

to
ch

em
ic

al
 d

ec
om

po
si

tio
n

[3
62

, 3
63

]

D
is

so
lv

ed
 o

rg
an

ic
 P

 →
 in

or
ga

ni
c 

ph
os

ph
at

e
Ph

ot
oc

he
m

ic
al

 d
ec

om
po

si
tio

n 
(m

in
er

al
iz

at
io

n)
[3

64
]

Ph
os

ph
at

e 
ad

so
rb

ed
 to

 F
e(

III
) o

xi
de

s 
or

 F
e(

III
)-

or
ga

ni
c 

m
at

te
r c

om
pl

ex
es

 →
 fr

ee
 p

ho
sp

ha
te

Ph
ot

oc
he

m
ic

al
 d

es
or

pt
io

n
[1

61
, 3

65
, 3

66
]

H
S−

/S
2−

 →
 H

2
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Cd

S,
 α

-F
e 2O

3
[3

67
, 3

68
]

SO
2 →

 S
O

42−
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
Ti

O
2, 

Fe
2O

3, 
Zn

O
, C

dS
[3

69
–3

72
]

Th
io

ls
 a

nd
 S

O
32−

 →
 o

xi
di

ze
d 

pr
od

uc
ts

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

Fe
rr

iti
n

[2
55

]

A
lk

yl
 s

ul
fid

es
 +

 N
O

x →
 a

ld
eh

yd
es

, s
ul

fo
ni

c 
ac

id
s, 

SO
2, 

SO
42−

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

[3
73

]



Page 10 of 24Doane  Geochem Trans  (2017) 18:1 

Ta
bl

e 
1 

co
nt

in
ue

d

Re
ac

tio
n

D
es

cr
ip

to
r

Fa
ci

lit
at

or
s

Re
fe

re
nc

es

O
2 →

 H
2O

2
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
Zn

O
, T

iO
2, 

sa
nd

 in
 th

e 
pr

es
en

ce
 o

f o
rg

an
ic

 e
le

ct
ro

n 
do

no
rs

A
qu

eo
us

 F
e(

III
)-

ca
rb

ox
yl

ic
 a

ci
d 

co
m

pl
ex

es
Tr

yp
to

ph
an

 a
nd

 ty
ro

si
ne

Po
rp

hy
rin

s 
an

d 
ph

th
al

oc
ya

ni
ne

s
A

lg
ae

 (l
iv

e 
or

 d
ea

d)

[3
4,

 1
07

, 2
46

, 2
98

, 3
74

–3
76

]

O
2 →

 H
2O

Ph
ot

oc
he

m
ic

al
 re

du
ct

io
n

α-
Fe

2O
3

D
is

so
lv

ed
 F

e 
an

d 
hu

m
ic

 s
ub

st
an

ce
s

(a
 c

at
al

yt
ic

 c
yc

le
)

[1
23

, 3
77

]

H
2O

 →
 H

2
Ph

ot
oc

he
m

ic
al

 re
du

ct
io

n
N

um
er

ou
s 

ca
ta

ly
st

s, 
us

ua
lly

 in
 th

e 
ab

se
nc

e 
of

 O
2, 

e.
g.

, 
Ti

O
2, 

Zn
S,

 α
-F

e 2O
3, 

hy
dr

at
ed

 C
u 2O

, t
un

gs
to

si
lic

at
e 

on
 T

iO
2, 

Ti
(II

I)-
ze

ol
ite

, g
ra

ph
ite

 o
xi

de

[2
1,

 2
2,

 2
62

, 3
15

, 3
77

–3
82

]

H
2O

 →
 O

2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
α-

Fe
2O

3 +
 F

e(
III

) (
aq

), 
Bi

VO
4 +

 e
le

ct
ro

n 
ac

ce
pt

or
, 

M
n 2O

3, 
λ-

M
nO

2, 
M

n 3O
4, 

Co
3O

4 +
 s

en
si

tiz
er

, A
gC

l, 
la

ye
re

d 
do

ub
le

 h
yd

ro
xi

de
 m

in
er

al
s

Fe
(O

H
)2+

 (a
q)

[3
83

–3
90

]

H
2O

 →
 H

2 +
 O

2
Ph

ot
oc

he
m

ic
al

 w
at

er
 s

pl
itt

in
g 

(o
xi

da
tio

n 
+

 re
du

c-
tio

n)
Ti

O
2, 

Fe
2O

3-
Fe

3O
4, 

Fe
2O

3-
Fe

S 2, 
Cu

2O
, Z

rO
2, 

A
g 

ze
ol

ite
, 

di
ve

rs
e 

tw
o-

m
in

er
al

 s
ys

te
m

s
[6

0,
 1

37
, 3

21
, 3

22
, 3

91
–3

93
]

A
s(

III
) (

aq
) →

 A
s(

V
) (

aq
)

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

N
o 

fa
ci

lit
at

or
Fe

rr
ih

yd
rit

e,
 k

ao
lin

ite
[1

58
, 3

94
, 3

95
]

A
s 4S

4 →
 A

s 4S
4 (

po
ly

m
or

ph
)

Ph
ot

oc
he

m
ic

al
 s

tr
uc

tu
ra

l (
cr

ys
ta

l) 
m

od
ifi

ca
tio

n
[3

96
]

A
s 2S

3 →
 [A

s 
+

 S
] +

 O
2 →

 A
s 2O

3
A

s 4S
4 →

 A
s 2O

3

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n/

di
ss

ol
ut

io
n

W
at

er
[3

96
, 3

97
]

Vo
la

til
e 

or
ga

ni
c 

co
m

po
un

ds
 +

 N
O

x →
 O

3
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[3

98
]

C
l−

 →
 C

l−
2 (

di
ch

lo
rid

e 
ra

di
ca

l a
ni

on
)

Ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n

C
hl

or
op

hy
ll,

 H
g(

II)
[6

5,
 3

52
]

C
l−

 +
 O

3 →
 C

l 2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[3

99
]

N
O

3−
 +

 B
r−

 →
 B

r 2
Ph

ot
oc

he
m

ic
al

 o
xi

da
tio

n
[4

00
]

A
 s

ug
ge

st
ed

 d
es

cr
ip

to
r i

s 
gi

ve
n 

fo
r e

ac
h 

re
ac

tio
n 

as
 w

el
l a

s 
su

bs
ta

nc
es

 re
po

rt
ed

 to
 fa

ci
lit

at
e 

th
e 

re
ac

tio
n 

(if
 a

ny
) a

nd
 s

om
e 

re
le

va
nt

 n
ot

es
. T

he
se

 fa
ci

lit
at

in
g 

su
bs

ta
nc

es
 a

ls
o 

oc
cu

r n
at

ur
al

ly
, o

r (
in

 ju
st

 a
 fe

w
 in

st
an

ce
s)

 
ar

e 
re

as
on

ab
ly

 s
im

ila
r t

o 
so

m
et

hi
ng

 th
at

 m
ig

ht
 o

cc
ur

 n
at

ur
al

ly
. A

bo
ut

 1
5%

 o
f t

he
 s

tu
di

es
 c

ite
d 

he
re

 c
an

 b
e 

co
ns

id
er

ed
 fi

el
d 

st
ud

ie
s, 

w
hi

ch
 m

ea
ns

 th
at

 a
 re

ac
tio

n 
w

as
 o

bs
er

ve
d 

w
ith

 b
ot

h 
na

tu
ra

l s
un

lig
ht

 a
nd

 n
at

ur
al

 
su

bs
ta

nc
es

 a
s 

w
el

l a
s 

un
de

r r
ep

re
se

nt
at

iv
e 

en
vi

ro
nm

en
ta

l c
on

di
tio

ns
, a

s 
op

po
se

d 
to

 th
e 

us
e 

of
 a

rt
ifi

ci
al

 li
gh

t a
nd

/o
r l

ab
or

at
or

y-
pr

ep
ar

ed
 e

qu
iv

al
en

ts
 o

f n
at

ur
al

 c
om

po
un

ds

N
ot

e 
on

 te
rm

in
ol

og
y 

Th
e 

te
rm

 “p
ho

to
ch

em
ic

al
” c

an
 b

e 
us

ed
 to

 m
ai

nt
ai

n 
a 

cl
ea

r d
is

tin
ct

io
n 

be
tw

ee
n 

ab
io

tic
 p

ho
to

re
ac

tio
ns

 a
nd

 a
na

lo
go

us
 re

ac
tio

ns
 in

vo
lv

in
g 

lig
ht

 a
nd

 li
vi

ng
 o

rg
an

is
m

s 
(p

ho
to

tr
op

hy
). 

Fo
r e

xa
m

pl
e,

 
“ir

on
(II

) p
ho

to
ox

id
at

io
n”

 c
an

 re
fe

r t
o 

ei
th

er
 a

 b
io

lo
gi

ca
l p

ro
ce

ss
 d

riv
en

 b
y 

lig
ht

 (p
ho

to
bi

ol
og

ic
al

/p
ho

to
tr

op
hi

c 
iro

n(
II)

 o
xi

da
tio

n)
 o

r a
 s

tr
ic

tly
 c

he
m

ic
al

, a
bi

ot
ic

 p
ro

ce
ss

 (p
ho

to
ch

em
ic

al
 ir

on
(II

) o
xi

da
tio

n)
. S

im
ila

rly
, a

n 
ab

io
tic

 
pr

oc
es

s 
th

at
 c

on
ve

rt
s 

w
at

er
 to

 O
2 u

nd
er

 th
e 

ac
tio

n 
of

 li
gh

t m
ay

 b
e 

de
sc

rib
ed

 a
s “

ph
ot

oc
he

m
ic

al
 o

xi
da

tio
n 

of
 w

at
er

” r
at

he
r t

ha
n 

si
m

pl
y “

ph
ot

oo
xi

da
tio

n 
of

 w
at

er
” (

ev
en

 th
ou

gh
 th

e 
la

tt
er

 is
 s

ho
rt

er
 a

nd
 o

ft
en

 u
nd

er
st

oo
d 

to
 

m
ea

n 
a 

ph
ot

oc
he

m
ic

al
 re

ac
tio

n)
; t

hi
s 

di
st

in
gu

is
he

s 
it 

fr
om

 li
gh

t-
in

du
ce

d 
bi

ol
og

ic
al

 o
xi

da
tio

n 
of

 w
at

er
 th

at
 m

ig
ht

 o
cc

ur
 s

im
ul

ta
ne

ou
sl

y 
in

 th
e 

sa
m

e 
en

vi
ro

nm
en

t



Page 11 of 24Doane  Geochem Trans  (2017) 18:1 

photoreactions at interfaces with water, gases, and other 
solids. Naturally occurring semiconductors are almost 
exclusively inorganic compounds, with notable excep-
tions (notable because they occur widely) being melanin 
[49] and possibly cellulose [50, 51] and peptides [52–54].

Natural semiconducting minerals, like most minerals, 
are rarely pure; additional metals are almost always pre-
sent [44], and these substitutional impurities can cause 
changes in energy levels and conductivity [44, 55]. Such 
alterations are manifested in photocatalytic activity. 
For example, the band gap of TiO2 decreases due to Fe 
impurities [56, 57], which extends its response to a wider 
range of solar radiation compared to pure TiO2; the effi-
ciencies of photochemical oxidation and reduction reac-
tions of TiO2 are also greater if Fe impurities are present 
[57, 58]. Similarly, the presence of Ti or V in magnetite 
enhances its photocatalytic activity relative to pure mag-
netite [59]. In addition to atoms of foreign elements, 
another common “defect” in minerals is deviation from 
stoichiometry due to vacancies (missing atoms), and this 
can also affect photochemical properties. For example, 
sulfur deficiencies in ZnS crystals impart increased pho-
tocatalytic activity under visible light to a material that 
normally absorbs little or no visible light [23]. In addition 

to chemical alterations, the photocatalytic activity of 
materials like these is also influenced by physical proper-
ties such as crystal structure and specific surface area [23, 
56, 60].

Like inorganic minerals, many natural organic com-
pounds also absorb sunlight and can react directly with 
other compounds or undergo reactions themselves 
(Fig. 3b); these include dissolved organic matter [61–63], 
“bioorganic” substances [64], chlorophyll [65], atmos-
pheric humic-like substances [42], and soot or black car-
bon [42, 66]. Moreover, two species may combine to form 
a new species with even greater propensity to undergo 
direct photoreactions, as is often the case with intra-
molecular or intermolecular charge-transfer complexes 
among components of organic matter [67] or between 
transition metals and organic matter [68]. Sometimes this 
even leads to catalytic or autocatalytic cycles [69–71].

Finally, materials that do not absorb sunlight, such as 
silica, may nonetheless enable direct photoreactions. 
These materials are usually catalysts and act primarily 
via surface adsorption, which can alter the bond lengths 
and energies of a substance when it is bound to the cata-
lyst [72, 73] and consequently alter the amount or wave-
lengths of sunlight absorbed by this substance [74, 75]. 

Fig. 2 Photogeochemical reactions, if enough information is known, can be classified using general principles of photochemistry. Examples are 
given for each of four categories in a simple scheme of classification based on the mechanism of reaction. Light-absorbing materials are shaded 
and catalysts are shown in italics. Intermediate processes in indirect reactions are indicated as separate reactions below the main reaction arrow. For 
additional explanation of these mechanisms, see the text and the references for specific reactions listed in Table 1
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Fig. 3 Simplified representations and some examples of processes that occur in photochemical reactions of natural substances: a promotion of 
electrons (e−) and generation of electron vacancies (holes, h+) upon irradiation of a semiconductor, which may then reduce and oxidize other sub-
stances; b excitement of organic compounds by sunlight which then directly react with other substances or are themselves altered, with examples 
of photochemical acidification, dissolution, and crosslinking; c photocatalysis via surface adsorption, which makes a species, here N2O, susceptible 
to the effect of light; d indirect generation, via a photosensitizer, of electrons and holes in a semiconductor: the difference between the high-
est occupied molecular orbital (HOMO) of the sensitizer and its lowest unoccupied molecular orbital (LUMO) is smaller than the band gap of the 
semiconductor, and therefore less energy is required to excite the sensitizer; e cooperative generation of transient reactive species by compounds 
that do not individually absorb sunlight; f generation of transient reactive species by light-absorbing compounds. Arrows with shadows indicate 
reactions induced by light (hν), asterisks (*) indicate excited species (electrons promoted to higher energy levels), single brackets (]) indicate mineral 
surfaces, and dotted lines (…) indicate surface adsorption. The references cited in the text offer additional, detailed explanations of these processes
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The bound substance then becomes susceptible to pho-
tolysis and other photoreactions (Fig.  3c). Depending 
on the nature of a substance, however, adsorption onto 
materials such as clay and ash can sometimes impede 
rather than facilitate photoreactions [76–78].

Indirect reactions
Indirect photochemical reactions are initiated by sub-
stances that absorb radiation and subsequently facilitate 
other reactions that do not involve the original light-
absorbing substance [42]. For example, excited electrons 
and holes can be indirectly generated in semiconductors 
by light of lower energy than the band gap: the semicon-
ductor itself does not absorb this light, but another sub-
stance (possibly even another semiconductor) that does 
absorb this light may be excited, and if this substance is 
in contact with the semiconductor and has appropriate 
energy levels, electrons can then be transferred between 
the excited substance and the semiconductor [48, 68, 79–
81] (Fig. 3d). The semiconductor, now carrying additional 
electrons or holes, can participate in redox reactions that 
would not otherwise occur. For example, TiO2 has a large 
band gap and is not normally excited by visible light; 
however, organic matter and natural chlorophyll deriva-
tives are excited upon absorption of visible light, and in 
proximity to TiO2 can transfer electrons to TiO2 [82, 83]. 
This process is called charge injection, and is an exam-
ple of photosensitization—reactions of TiO2 with addi-
tional substances are facilitated by the initial presence of 
organic matter or chlorophyll derivatives.

A substance may also participate indirectly in photo-
chemical reactions by generating reactive species upon 
irradiation; these reactive species then engage in other 
reactions that do not involve the original light-absorbing 
substance [42]. For example, some aluminosilicates (e.g., 
zeolites) and non-transition-metal oxides (e.g., SiO2, 
Al2O3, MgO) can react with the oxygen in air upon irra-
diation to produce reactive oxygen species (ROS) such as 
singlet oxygen and superoxide [84, 85]. Photodegrada-
tion of an organic compound was observed in the pres-
ence of kaolinite and montmorillonite, for example, and 
was attributed to the formation of ROS on the surface of 
these minerals in the presence of molecular oxygen and 
water [86]. Since the organic compound in question does 
not absorb sunlight and the ROS are produced in a sepa-
rate reaction, this is an indirect photoreaction, facilitated 
by the clay minerals which presumably act as catalysts by 
generating ROS from O2 upon exposure to light (Fig. 3e).

Along with minerals [87], other substances can indi-
rectly facilitate photoreactions by generating reactive spe-
cies in sunlight: dissolved and particulate organic matter 
[88–95], dissolved organic matter and silicate minerals in 
synergy [63], cellulose [50, 96, 97], lignin [98, 99], leaves 

of phototoxic plants [100], chlorophyll [101], nitrite and 
nitrate [102–104], flavins [41, 105], tryptophan and tyros-
ine [99, 106, 107], and aqueous iron(III) species [108–
110]. In contrast to the typically strong oxidizing action 
of ROS, a strongly reducing species can also be generated 
which is usually represented as e− (aq), a hydrated elec-
tron, although its true nature and features are not com-
pletely understood. Hydrated electrons are evident upon 
irradiation of dissolved organic matter, for example [94, 
95]. As might be expected, reactive species are formed 
on exposed soil surfaces [111, 112]; both the mineral and 
organic components of soil contribute to this process 
[113]. Indirect photolysis of organic compounds in soil 
has been observed to occur at depths of up to 2 mm due 
to migration of reactive species; in contrast, direct photol-
ysis (in which the degraded compound itself absorbs light) 
is restricted to a photic depth of about ten times less [114, 
115]. Both light penetration and transport processes such 
as diffusion influence the extent to which compounds are 
degraded by light in soil and similar media [116]. Indirect 
processes may operate during photodegradation of plant 
material as well [117]. In certain instances, however, the 
same substances listed above may also inhibit the forma-
tion of reactive species and therefore retard indirect pho-
toreactions, as observed for chlorophyll [118], carotenoids 
[119], and organic matter in soil and water [76, 120].

Experimental approaches
Studies in photogeochemistry may take several differ-
ent paths, depending on the source of inspiration for 
identifying and investigating natural photochemical 
reactions (Fig.  4). Oftentimes photogeochemistry dis-
tinctly parallels biogeochemistry. As mentioned above, 
early research sometimes intentionally used biological 
phenomena as a starting point to search for analogous 
photochemical reactions. Other studies simply explored 
the effect of light on different materials, and as a result 
also discovered photochemical reactions analogous to 
biological processes. Photochemical counterparts have 
since been confirmed for many well-known biochemical 
reactions. These include photochemical disproportiona-
tion of acetic acid [121, 122] which is analogous to ace-
toclastic methanogenesis, and light-induced depletion of 
O2 via a catalytic cycle involving iron and organic mat-
ter [123], analogous to consumption of O2 by microor-
ganisms. Estimates of the environmental significance 
of photochemical reactions relative to biological reac-
tions have been offered on occasion, as for photochemi-
cal production of gases from plant litter [124, 125], 
and the photofixation of N2 in deserts, estimated as 
20  kg  N  ha−1  year−1, which is about one third of that 
fixed by lightning and about 10% of that fixed biologically 
on Earth [126]. In contrast to these processes, in which 
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biological reactions predominate (at least on a global 
level), the rate of degradation of dissolved lignin in rivers 
by photochemical mechanisms was found to be several 
times larger than by biological mechanisms [127]. Witz, 
based on his (nonbiological) studies with cellulose and 
other plant fibers [14], concluded that light is indeed an 
integral participant in natural decomposition: “In nature, 
once the life of plants is extinguished, cellulosic matter 
and other structured matter must no doubt pass progres-
sively under the influence of light, air, and humidity … 
and are eventually transformed into gaseous compounds 
and colored humic materials.”

Extension of known photoreactions
The most obvious experimental precedent in photogeo-
chemistry is a natural photoreaction that has already been 
ascertained. Known reactions may be further investigated 
as to their context, mechanisms, and environmental sig-
nificance. For example, the greenhouse gases CO2, CH4, 
and N2O are the subject of a large amount of ongoing 
interdisciplinary research. Natural production and con-
sumption of these gases at the earth’s surface are ascribed 
largely to biological activity [128–131], which remains the 
focus of most research, in spite of studies that have dem-
onstrated photochemical production and consumption 
(see Table 1). Similarly, mineralization of organic carbon, 
nitrogen, and phosphorus in soil and water, the biological 
drivers of which are extensively studied, may also proceed 
photochemically. It is interesting to note that biologi-
cally recalcitrant portions of organic matter can be quite 

susceptible to photodegradation [132, 133]; the conse-
quent release of labile organic and inorganic compounds 
can stimulate biological activity [134–136].

Sometimes a particular reaction, when placed in a 
certain environmental context, may even affect existing 
paradigms. For example, it is generally (and logically) 
assumed that in water classified as anoxic there can be no 
reactions involving molecular oxygen, including aerobic 
metabolism. However, some naturally occurring miner-
als are known to facilitate the photochemical oxidation of 
water to molecular oxygen; such “photochemical sources 
of oxidizing power in low-oxygen environments” [137] 
may be active alongside or in place of other sources of 
oxygen such as air or photosynthetic organisms. Simi-
larly, organic acids known to be produced during the 
photodecomposition of organic matter may form a con-
nection between light exposure and soil acidity, a simple 
but unestablished possibility next to the usual factors that 
determine soil pH.

While investigation of known natural photoreactions 
can be extended by pursuing additional work with the 
same substances, knowledge of natural photoreactions 
may also support inquiry into photoreactions of distinct 
but related substances. For example, the susceptibility 
to photodegradation of polycyclic aromatic hydrocar-
bons and related condensed aromatic compounds has 
been reported [e.g., 78, 138–140]. These studies focus on 
relatively simple molecules which are either regarded as 
naturally occurring pollutants or are components of dis-
solved organic matter. At the same time, the incomplete 

Fig. 4 The study of photogeochemistry reflects the overlap between surface geochemistry and photochemistry. The curved arrows represent three 
different but complementary approaches which can lead to the discovery of natural photoreactions: observing natural phenomena, extending 
known natural photoreactions, and contextualizing photoreactions that are not known to occur naturally



Page 15 of 24Doane  Geochem Trans  (2017) 18:1 

combustion of natural organic materials leaves solid 
residues (“charcoal”, “biochar”, or “pyrogenic black car-
bon”) that contain analogous extended aromatic struc-
ture [141–143]. It may therefore be suggested that this 
ubiquitous material, commonly deemed environmentally 
persistent [63, 140, 143, 144] and therefore paradoxical 
(since it does not accumulate in the environment) [145, 
146], is also degraded upon exposure to sunlight.

The study of photogeochemistry, while purely chemi-
cal in nature, may even venture into the domain of 
biology and identify more of the ways in which com-
pounds derived from living organisms can influence 
abiotic photochemistry [e.g., 81], as well as more of the 
unique relationships between photochemical reactions 
and biological metabolism known as photobiocatalysis 
[147–149].

Observation of natural phenomena
Specific photoreactions are often planned and conveni-
ently observed in the laboratory, using artificial light 
sources or sunlight itself, where it is easy to confirm the 
identity of the substances involved, design reaction ves-
sels, characterize the light, and adjust the reaction envi-
ronment. However, observations of natural phenomena 
can offer opportunities to consider unknown photochem-
ical reactions possibly associated with these phenomena. 
For example, by the 1970s it was generally agreed that 
nitrous oxide (N2O) has a short residence time in the 
troposphere, although the explanation for its removal 
was incomplete. Since N2O does not absorb light of wave-
lengths greater than 290 nm, direct photolysis had been 
discarded as a possible explanation. It was then observed 
that light would decompose chloromethanes when they 
were adsorbed on silica sand [150], and this occurred at 
lower energies (longer wavelengths) than the absorption 
spectra for the free compounds. The same phenomenon 
was observed for N2O on natural sand, leading to the 
conclusion that particulate matter in the atmosphere is 
responsible for the destruction of N2O via surface-sensi-
tized photolysis [151]. Indeed, the idea of such a sink for 
atmospheric N2O was supported by reports of low con-
centrations of N2O in the air above deserts, where there 
is a large amount of suspended particulate matter [152]. 
In general, simple atmospheric gases (e.g., CO2, CO, CH4, 
N2O, N2, H2O, H2, O2) do not absorb ultraviolet and vis-
ible sunlight at the earth’s surface, and the cooperation of 
particulate matter is necessary for photoreactions involv-
ing these gases; such reactions are therefore heterogene-
ous. Other gases, however, such as some of the volatile 
compounds emitted from living plants [153, 154], burn-
ing plants [155] and soils [156], do absorb sunlight and 
can undergo homogeneous as well as heterogeneous 
reactions.

As another example, the observation that the amount 
of nitrous acid in the atmosphere greatly increases during 
the day led to insight into the surface photochemistry of 
humic acids and soils and an explanation for the original 
observation [157]. Fluctuations such as this are often a 
clue to the existence of photochemical reactions, which 
operate only during the day. Diurnal photogeochemical 
cycles often have a significant influence on the amounts 
of redox-sensitive elements in aqueous environments 
[70, 158–160]. Furthermore, multiple elemental cycles 
can be linked via photoreactions that directly affect both 
elements, as occurs during the concurrent oxidation of 
organic matter and reduction of iron [92]. The effect of 
light on one element can also indirectly affect other ele-
ments: a daily cycle of photoreduction, reoxidation, and 
precipitation of iron(III) species affects dissolved As, Cu, 
and P, which adsorb to iron(III) oxides as they reappear 
at night and may be subsequently released the next day 
upon photoreduction of the same iron oxides [158, 159, 
161].

Contextualization of nonnatural photoreactions
Although photogeochemistry describes reactions among 
substances known to occur naturally, studies of simi-
lar substances may nonetheless point towards greater 
understanding of natural processes. A general example 
demonstrates this: it has been shown that samples of clay 
minerals found in soils can accelerate the photodegra-
dation of synthetic chemicals via production of reactive 
oxygen species [e.g., 86]; it may therefore be assumed 
that many naturally occurring compounds are similarly 
affected. The conversion of N2 to NH3 and NO3

− has 
been observed upon irradiation with visible light in the 
presence of Fe2Ti2O7 [162, 163]. While such a compound 
is not known to occur naturally, it is related to known 
minerals like ilmenite (FeTiO3), ulvospinel (Fe2TiO4), 
pseudorutile (Fe2Ti3O9), and various titanium-substi-
tuted iron oxides, and can form when ilmenite is heated 
[162, 164]; these naturally occurring minerals might 
therefore also react with N2 under certain conditions.

Outlook
Principles of photochemistry can be readily merged 
with geochemistry in investigation as well as educa-
tion. Given the broad response of natural substances to 
light, recognizing photochemical reactions in the envi-
ronment is part of understanding its fabric of intercon-
nected processes, particularly on land, where this has not 
been explored as much as in water or the atmosphere. 
As remarked by Formenti and Teichner [40] concern-
ing heterogeneous photochemistry, “there are so many 
different possibilities”, an outlook reiterated by Cooper 
and Herr [165] for aqueous photochemistry which is 
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easily extended to photogeochemistry: “there are a seem-
ingly endless number of combinations and permutations 
to study.” This does not enjoin an unattainable research 
agenda, but rather affirms ample opportunity for geosci-
entists to incline their curiosity toward what happens on 
Earth when the sun appears.
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