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Constraining the carbonate system in soils 
via testing the internal consistency of pH, pCO2 
and alkalinity measurements
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Abstract 

Inorganic carbon exists in various dissolved, gaseous and solid phase forms in natural waters and soils. It is impor-
tant to accurately measure and model these forms to understand system responses to global climate change. The 
carbonate system can, in theory, be fully constrained and modelled by measuring at least two out of the following 
four parameters: partial pressure (pCO2), total alkalinity (TA), pH and dissolved inorganic carbon (DIC) but this has not 
been demonstrated in soils. In this study, this “internal consistency” of the soil carbonate system was examined by 
predicting pH of soil extracts from laboratory measurement of TA through alkalinity titration for solutions in which 
pCO2 was fixed through equilibrating the soil solution with air with a known pCO2. This predicted pH (pHCO2) was 
compared with pH measured on the same soil extracts using spectrophotometric and glass electrode methods 
(pHspec and pHelec). Discrepancy between measured and calculated pH was within 0.00–0.1 pH unit for most samples. 
However, more deviation was observed for those sample with low alkalinity (≤ 0.5 meq L−1). This is likely attribut-
able to an effect of dissolved organic matter, which can contribute alkalinity not considered in the thermodynamic 
carbonate model calculations; further research is required to resolve this problem. The effects of increasing soil pCO2 
was modelled to illustrate how internally consistent models can be used to predict risks of pH declines and carbonate 
mineral dissolution in some soils.
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Introduction
Concentrations of atmospheric carbon dioxide (CO2) 
have increased by 40%, from 280 ppm in 1750 to 400 ppm 
in 2014 [1]. This increase has been caused by anthropo-
genic activities, especially burning of fossil fuels which is 
the main cause of global warming [2]. The soil inorganic 
carbon system is one of the largest sinks of atmospheric 
CO2 and the global C cycle [3], and is vulnerable to 
anthropogenic perturbations [4]. The partial pressure of 
CO2 (pCO2) in the atmosphere is in equilibrium with the 

soil surface but deeper soil layers may have higher pCO2 
due to microbial respiration and -slow exchange with the 
atmosphere. Increasing soil pCO2 as a consequence of 
the increasing concentrations of atmospheric pCO2 [5, 6] 
has demonstrated the participation of soil inorganic car-
bon systems to global climate change.

Inorganic carbon can occur in different forms in soils 
including dissolved species (CO2, carbonic acid, bicar-
bonate, and carbonate ions), and solid mineral phases 
(e.g. calcium carbonate, dolomite). Calcium carbonate 
(CaCO3) can comprise a major part of some soil sys-
tems, particularly in arid and semi-arid areas [7]. Under 
increased soil pCO2, soil acidification occurs through 
carbonic acid formation followed by weak acid dissocia-
tion [8]. The weathering (dissolution) of CaCO3 (calcite 
and aragonite) in soils arises from either carbonic acid at 
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pH > 6 or strong acids at lower pH. Dissolution of solid 
calcium carbonate at pH > 6.5 [9–11] provides a buffer 
(provided that it is not exhausted) via an increase in 
HCO3

− alkalinity against pH changes in soil [12] caused 
by acidification processes [13]. As well as pH the assess-
ment of the degree of CaCO3 saturation is crucial for 
agricultural management due to its influence on chemical 
and physical soil characteristics such as cation exchange 
capacity (CEC), porosity, and hydraulic conductivity [14]. 
The outcome of anthropogenic climate change could be 
a decrease in CaCO3 mineral saturation status, resulting 
in dissolution [15–17], a decrease in the pH buffering 
capacity, and soil acidification.

To give increased confidence in predicting the effects 
of increased atmospheric pCO2 and risks of soil acidifica-
tion, accurate characterization of the soil inorganic car-
bon system [18] is essential. This requires measurement 
of inorganic carbon system variables such total alkalinity 
(TA), pH, pCO2 and dissolved inorganic carbon (DIC) 
[19]. By measuring accurately at least two of these inor-
ganic carbon system parameters it is possible to calculate 
the remaining parameters using knowledge of carbonate 
equilibrium constants [20]. If a third carbonate system 
parameter is measured this enables rigorous checking of 
the internal consistency of the equilibrium constants of 
the system and accuracy of measurements [21].

The internal consistency assists in checking if the same 
outcomes can be obtained through different independ-
ent carbonate system measurements [22]. The internal 
consistency of different sets of marine carbonate system 
measurements and equilibrium constants has previously 
been demonstrated [18, 23–26]. However, this internal 
consistency has not been demonstrated yet for the soil 
carbonate system, and this introduces major uncertain-
ties in our ability to understand acidification risks and 
response to rising atmospheric CO2 levels. Highly precise 
analytical measurements of carbonate parameters are a 
prerequisite for evaluation of the internal consistency of 
this system [27–31]. This was one of the drivers for our 
recent development of spectrophotometric pH measure-
ment methods for soil extracts [13, 32] which had previ-
ously been proven to provide high precision pH (< 0.01 
pH units) in the marine chemistry field [33–38].

The objective of this study was to develop a model for 
evaluation of the consistency of thermodynamics of the 
soil carbonate system by calculation of a third parameter 
from two other parameters. Using a controlled laboratory 
experiment, we calculated pH of soil extracts equilibrated 
with a fixed pCO2 and measured total alkalinity (TA) and 
then compared the results with pH measured through 
spectrophotometric and glass electrode methods. This 
study is also unique in terms of the investigation of the 
internal consistency of the soil carbonate system through 

the incorporation of state-of-the-art spectrophotomet-
ric methods for pH measurement. A further aim of this 
study was to assess the accuracy of spectrophotometric 
soil pH measurements against conventional glass elec-
trode pH measurements using the same approach. A 
modelling approach was then explored as a potential tool 
for prediction of increasing soil pCO2 and soil carbonate 
dissolution as a result of global climate change.

Materials and methods
Theory
Soil pH determination using acid–base equilibria of CO2
The pH and carbonate equilibria in the soil solution can 
in theory be determined using Henry’s Law constant for 
CO2 (KH), the first and second dissociation constants of 
carbonic acid (H2CO3*) (K1 and K2) resulting in bicarbo-
nate and carbonate ions, respectively and the water self-
dissociation equilibrium constant (Kw) [39]:

{} represents ion activities for the mass action equations 
with the equilibrium constants given valid at 25 °C and zero 
ionic strength (µ = 0). The fugacity (fCO2) may be approxi-
mated by the partial pressure of CO2(pCO2) in the air as 
the ideal behavior of CO2 was considered in our study.

The soil pHCO2 is determined using the following 
equation:

This equation represents experimentally measured alka-
linity since it corresponds to the concentration of strong 
acid required to titrate the solution to the endpoint of 
bicarbonate. pH can be determined using equation [2] 
provided that the amounts of acid or base added to the 
system and pCO2 are known. Equation (2), can be solved 
iteratively by the bisection method until the left-hand 
side (alkalinity) equals the right-hand side or via other 
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numerical methods  (see the supplementary information, 
Additional File 1, for the full derivation of the equation).

Soil extract preparation
Nine soils collected from South Australia with a pH 
range of 6–8 (Table  1) and three replicates of each soil 
extract (1:1 w/v soil:water) were used in the study for pH 
measurements (refer to [32] for details).

Laboratory experimental set up
A laboratory experiment was conducted in which ca. 
25 mL of soil extract was introduced into a custom-made 
equilibration flask (Fig. 1) which was connected via tub-
ing to a flow-through cell on a double-beam spectropho-
tometer (GBC UV/VIS 916).

The flask was placed on a temperature-controlled water 
bath adjusted to 25  °C. The temperature in the spectro-
photometric cell holder was also kept constant at 25  °C 
using an installed water thermostat. A pH electrode 
(Orion SureFlow) was inserted into the flask that had been 
pre-calibrated with commercially manufactured (Austral-
ian Chemical Reagents) standard high ionic strength pH 7 
and pH 4 buffers (m ≈ 0.1 mol L−1) at 25 °C.

The soil extracts were equilibrated with a fixed pCO2 
via a gas tube connected to a pure air cylinder (BOC 
gases) inserted into the top of the equilibration cell 
(Fig. 1). The pCO2 in the gas stream was measured using 
a calibrated LICOR 840a infra-red gas analyser. The air 
was circulated through the soil solution using slow bub-
bling for approx. 30 min per sample until the spectra of 
solution and the electrode pH measurement were stable.

Then for spectrophotometric pH measurement, a sulfo-
nephthalein indicator depending on the sample pH range 
(determined by the electrode) was selected and injected 
into the soil solution. The absorbance spectrum with dye 
was recorded for the circulating soil extract solution. The 

absorbance spectrum for the indicator was generated 
through subtraction of a baseline spectrum of soil solu-
tion without indicator dye (refer to [32] for details).

Alkalinity measurement
After pH measurement, a measured volume of soil solu-
tion and indicator dye was transferred into a separate 
beaker for alkalinity measurement. Great attention was 
taken to avoid solution loss by extracting all the solution 
out of the flow-through cell and connecting tubes. The 
solution was stirred gently, and initial pH was recorded 
when a stable reading was obtained, and then titration 
was conducted using an autotitrator to deliver incre-
ments of 0.16 N H2SO4 and continued to the end point 
at pH ≤ 4.5. pH was measured using a glass electrode 
after each acid addition. Adequate titration points were 

Table 1  Soil physical properties and major ion concentrations in a 1:1 w/v soil:water extract

*Monarto 1 and Monarto 2 were selected form two locations (Highland and Highway, respectively)

Depth, cm Sand silt clay, % Major cations and anions

Cl− NO3
− SO4

2− Ca2+ K+ Mg2+ Na+

meq L−1

Monarto 1* 0–10 84.6 7.10 8.30 0.65 0.44 0.13 2.62 0.46 0.56 0.69

Lock siliceous 0–10 95 0 5 0.38 2.35 0.09 3.59 0.78 0.44 0.35

Karoonda 0–10 97.4 0.2 2.40 0.24 0.24 0.11 0.39 0.25 0.21 0.20

Ngarkat 0–10 95.80 1.0 3.20 0.18 0.04 0.05 0.25 0.11 0.17 0.21

Lock Horizon B 0–10 97.50 2.50 0 0.20 0.34 0.14 1.40 0.11 0.54 0.60

Modra 0–10 65 5 30 3.36 5.70 0.31 5.72 1.34 1.39 1.34

Monarto 2* 0–10 93.6 1.1 3.8 0.31 0.24 0.19 0.50 0.39 0.30 0.25

Cowirra 0–10 41.50 18.80 39.70 4.57 0.02 35.6 25.46 1.14 14.36 9.17

Black point 10–20 72.70 9.20 18.10 2.21 0.28 0.37 2.23 0.27 0.55 2.46

CO2 
gas in pH electrode

Sample
in

CO2 gas out

Sample Out

Fig. 1  Diagram of soil carbonate equilibrium cell
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recorded, ensuring high accuracy. A gran linear extrap-
olation function was utilized to determine alkalinity for 
low ionic strength samples [40].

Laboratory analytical measurements
Stock solutions of bromocresol purple (BCP) and phe-
nol red (PR) at a total concentration of 3 × 10−3 mol L−1 
were used. The absorbance maxima (Abs) of acid and 
base forms of PR were read at 433 nm, 558 nm (λ1 and 
λ2) and BCP at 432 nm, 589 nm (λ1 and λ2), respectively, 
using the spectrophotometer Cintral™ software and used 
for R (= λ2Abs./λ1Abs) calculation (see [32]). The value 
for molar absorbance ratios (e1-e3) and pK2 of indicators 
used in this study (PR and BCP) are those of [36].

The ionic strength (µ) of each soil extract was deter-
mined via electrical conductivity (EC, mS  cm−1) meas-
urement using a calibrated conductivity electrode 
(TPS Glass K = 1.0 Cond Sensor) using the equation 
µ = EC × 0.0127 [32, 41, 42].

The concentration of dissolved organic carbon (DOC) 
in filtered soil solutions was also estimated using a spec-
trophotometer at an absorbance of 250 nm [43] using the 
regression equation [DOC] = 33.99 A250 + 8.16 [43–45].

Concentrations of major cations (Ca2+, Mg2+, Na+, 
K+) were measured by inductively coupled plasma opti-
cal emission spectroscopy (ICPOES) [46] and concen-
trations of anions (NO3

−, SO4
2−, Cl−) were determined 

by ion chromatography using a Dionex ICS-2500 system 
[46] (Table 1).

Geochemical modelling calculations
To assess the internal consistency of the soil carbonate 
system, we compared the soil solution pH (n = 27, pH 
range of appx. 6–8) calculated from pCO2 (pHCO2), and 
alkalinity measurements using Eq.  (2), to pH measured 
using both spectrophotometric (pHspec) and glass elec-
trode (pHelec) methods. Carbonate system calculations 
were based on equilibrium constants reported by [39] at 
zero ionic strength (µ = 0) and 25 °C with corrections for 
variable ionic strength made using the Davies equation.

The geochemical speciation program PHREEQC [47] was 
used to calculate carbonate mineral (calcite, aragonite, dolo-
mite) saturation states from the fixed pCO2 and measured 
alkalinity, measured major ions and also at a range of ele-
vated pCO2 (to assess the effect of climate change) values.

Results and discussion
Measurement and internal consistency of the soil 
carbonate system
The pH values calculated from pCO2 and alkalinity 
(pHCO2) and pH obtained using electrode and spectro-
photometric methods (pHelec and pHspec) are shown in 
Table  2. An average precision of ca. 0.03 pH units was 

obtained for three replicate (pHCO2) measurements, 
which was similar to the recorded precision of measured 
pHspec and pHelec values (0.05 pH units) (Table 2). Hence 
the potential for spectrophotometric pH measurements 
to provide a higher accuracy for determining the car-
bonate system parameters (compared to a conventional 
glass electrode measurement) was not proven in this 
experiment. This may reflect our very careful pH elec-
trode measurement protocols (e.g., temperature control, 
electrodes with free-flowing junctions designed for soil). 
Spectrophotometrically measured pH along with another 
carbonate system parameter has been the most common 
and accurate approach to calculate oceanic pCO2 [23, 
26]. This might be particularly important in saline soils 
where there are difficulties in calibrating glass electrodes 
to enable accurate measurement.

A plot of the residual of pHCO2 minus pHelec, pHspec 
(Fig. 2a), shows that calculated pH (pHCO2) was in general 
higher than the measured pH values (pHelec and pHspec). 
There was a good agreement between measured and cal-
culated pH for soil extracts with pH > 7 (Table 2, Fig. 2a) 
with an average difference of approximately 0.1 pH units. 
These results show that the soil carbonate system model 
using the constants of [39] was internally consistent with 
measurements in pH > 7 extracts. While the internal con-
sistency of the seawater CO2 system has been previously 
demonstrated [18, 23, 26, 27, 31], our measurements 
show it is possible to demonstrate this in soil solutions. 
This is important as it demonstrates, for the first time to 
our knowledge, that carbonate system equilibria can be 
accurately modelled in soils.

However, there was a larger deviation of 0.3–0.8 pH 
units for those samples with pH ≤ 7 (Table  2, Fig.  2a), 
which mainly corresponded to soil extracts with low 
alkalinity of < 0.5  meq L−1 (Fig.  2b). Inconsistencies in 
the pH-DIC-pCO2 relationship have been previously 
explained with regards to the difference between TA 

Table 2  Mean and  standard deviation (SD) of  calculated 
pH (pHCO2), measured pHspec and pHelec in different soils

Soil pHCO2 (SD) pHspec (SD) pHelec (SD)

Lock Siliceous 7.98 (0.01) 8.00 (0.09) 7.91 (0.03)

Ngarkat 7.08 (0.01) 7.03 (0.04) 6.79 (0.03)

Monarto 1 8.06 (0.01) 8.06 (0.03) 8.11 (0.04)

Modra 7.60 (0.04) 7.67 (0.04) 7.63 (0.02)

Lock Horizon 8.17 (0.03) 8.12 (0.04) 8.10 (0.04)

Karoonda 7.05 (0.06) 6.47 (0.08) 6.24 (0.14)

Monarto 2 7.17 (0.12) 6.75 (0.06) 6.63 (0.06)

Cowirra 7.79 (0.01) 7.74 (0.05) 7.72 (0.02)

Black point 7.94 (0.01) 8.04 (0.03) 8.04 (0.01)

Average SD 0.03 0.05 0.05
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through the carbonate model and measured TA con-
centrations [26]. Measured TA constitutes the contribu-
tion of both organic bases [26, 30, 31, 48] and carbonate 
species. Conversely, calculation of TA via the thermo-
dynamic carbonate model used in this study does not 
include the contribution of organic bases as they cannot 
be easily measured. However, in an attempt to determine 
the source of total alkalinity surplus relative to calcu-
lated carbonate, dissolved organic carbon (DOC) for all 
samples was estimated via spectrophotometric meas-
urements in the UV-range [43] (Table 3). There was lit-
tle difference DOC among the samples, with all extracts 
containing approximately 70 mg L−1 DOC, except Lock 
B (33.5 mg L−1).

For those samples with low alkalinity ≤ 0.5  meq 
L−1 the discrepancy between total (Gran, measured 
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Fig. 2  Difference between pH calculated using carbonate systems and spectrophotometric and electrode pH measurements for different soils 
against spectrophotometric pH values (a). Difference between calculated and measured pH values as a function of total alkalinity (b)

Table 3  The mean value of  alkalinity titration (TAtit) 
with  standard deviation (SD) in  brackets and  estimated 
dissolved organic carbon (DOC) in different soils

Soil TAtit (SD), meq L−1 Estimated 
DOC, mg L−1

Lock siliceous 1.38 (0.05) 74.69

Monarto 1 1.66 (0.03) 78.14

Ngarkat 0.18 (0.01) 62.08

Modra 0.62 (0.05) 68.88

Lock B 2.9 (0.17) 33.50

Karoonda 0.19 (0.01) 70.91

Monarto 2 0.25 (0.03) 73.71

Cowirra 1.06 (0.09) 76.64

Black point 1.28 (0.01) 75.24
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alkalinity) and carbonate alkalinity (calculated TA using 
the model) seems likely to have been caused by the 
uptake of protons by organic bases (Table  2). To fur-
ther assess this, the organic alkalinity of soil solutions 
was estimated from the difference between measured 
total alkalinity and carbonate alkalinity calculated using 
the thermodynamic carbonate model (Eq.  2) with the 
measured spectrophotometric pH and experimentally 
fixed pCO2 as inputs. The  % of organic alkalinity ver-
sus total alkalinity shown in Fig. 3 suggests that the low 
alkalinity soils in general have a much higher propor-
tion of organic alkalinity. Hence it may be preferable to 
not use alkalinity as a measured parameter for carbon-
ate system calculations in some soils with low alkalin-
ity. Measuring another parameter of the soil carbonate 
system such as pCO2 or dissolved inorganic carbon 
(DIC) could be preferable in these soils. Spectrophoto-
metric carbonate ion measurements have recently been 
developed [49] and may enable precise values that can 
be used for internal consistency calculations in soils.

Calculation of carbonate mineral saturation states
Calcite, aragonite and dolomite saturation states (mg L−1) 
of soil solutions were calculated from non-fixed pCO2 
(pHspec and TA) and fixed pCO2 (pCO2 and TA) using the 
geochemical speciation program PHREEQC. There was 
variability in carbonate mineral saturation states with 
some over-saturated (SI > 0 at pHPHREEQC > 8, suggesting 
mineral calcite could precipitate from solution) and some 
under-saturated (SI < 0 at pHPHREEQC < 8, suggesting cal-
cite dissolution) (Table 4).

Simulating increasing pCO2 in soil solutions
As noted above soil pCO2 is one of the most important 
variables governing soil solution pH [50] and this is also 
influenced by atmospheric pCO2 changes. To indicate the 
potential application of an internally consistent carbon-
ate system model to assess climate and/or biogeochemi-
cal process change effects, we modelled the influence 
of four elevated soil pCO2 scenarios (1000, 2500, 5000, 
and 10,000 µatm). Soil pH decreased from 0.4 to 1 pH 
units as a consequence of increased pCO2 levels from 
1000 to 10,000 µatm respectively (Fig.  4). The effect of 
elevated pCO2 on calcite/aragonite (CaCO3) and dolo-
mite (CaMg(CO3)2) saturation status (calculated using 
PHREEQC from pH, alkalinity and major ion concen-
trations) of these soils is shown in Fig.  5. The soils that 
are initially supersaturated relative to carbonate minerals 
at current atmospheric pCO2 levels (≈ 400 µatm) tran-
sition to undersaturated in the 500–1000 µatm pCO2 
range. This is because carbonate ion concentrations have 
declined due to the lowering of pH (Fig.  4). In contrast 
the soils that are undersaturated at current atmospheric 
pCO2 levels (Karoonda, Ngarkat, Modra, Monarto 2) 
remain undersaturated as expected under elevated pCO2. 
This suggests that carbonate minerals in some surface 
soils could be highly vulnerable to dissolution due to 
global climate change, which could result in large pH 
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Table 4  Calculated pH (pHPHREEQC) and  calcite, aragonite and  dolomite saturation status using the  geochemical 
speciation program PHREEQC

Soil pH PHREEQC SI-Calcite, Aragonite and Dolomite (pHspec 
and TA) (mg L−1)

SI-Calcite, Aragonite 
and Dolomite (pCO2 and TA) 
(mg L−1)

Lock Siliceous 8.27 0.28, 0.14, − 0.20 0.54, 0.39, 0.30

Monarto 1 8.36 0.34, 0.19, 0.14 0.62, 0.48, 0.71

Ngarkat 7.41 − 2.5, − 2.7, − 5.20 − 2.20, − 2.3, − 4.4

Modra 7.89 − 0.28, − 0.42, − 1.04 − 0.06, − 0.21, − 0.61

Lock Horizon 8.47 0.25, 0.10, 0.22 0.58, 0.43, 0.88

Karoonda 7.38 − 2.9,− 3.14, − 6.12 − 2.09, − 2.2, − 4.3

Monarto 2 7.51 − 2.4923, − 2.6361, − 5.0855 − 1.7, − 1.8, − 3.5

Cowirra 8.04 0.35, − 0.02, − 0.23 0.64, 0.17, 0.16
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changes once this buffer is exhausted. It is also impor-
tant to note that our measurement set-up and models 
assumed an open system with fixed pCO2. Nevertheless, 
the internal consistency demonstrated should also apply 
to a closed system where pCO2 can vary while DIC is 
fixed.

The soil carbonate system measurement and modelling 
conducted in this study is an important first step for ena-
bling a better understanding of related soil geochemical 
processes, in particular risks of inorganic carbonate dis-
solution due to global climate change. However, it would 
be important to see if internal consistency can also be 
demonstrated in situ. For this purpose, field experiments 
are now suggested accompanied by both spectropho-
tometric and electrode soil pH measurement methods. 
The influence of soil respiration, which affects both pCO2 
and pH, also needs to be considered in the design of field 
measurements. Widespread global measurement of soil 
pH and calcium carbonate states using these methods 
would appear beneficial to assess the soil system response 
to climate change.

Conclusions
In this study, the internal consistency of the soil car-
bonate system was assessed using experimental meas-
urements and a thermodynamic equilibrium carbonate 
system model. The pCO2 was fixed in the experiment 
by equilibrating the soil solution with air with a known 
pCO2. Discrepancy of calculated pH from measured 
pH using spectrophotometric and glass electrode 
methods was within 0.00–0.1 pH units when alkalinity 
was > 0.5  meq L−1. This implies accurate prediction of 
pH from other carbonate system parameters is feasi-
ble using inorganic carbon system equilibrium calcula-
tions. However, contribution of organic bases appeared 
to result in errors in the calculated pH for samples with 
low alkalinity < 0.5 meq L−1. Nevertheless, this appears 
to be the first time that the internal consistency of soil 
carbonate system has been demonstrated. This enables 
a better understanding of soil responses to global cli-
mate change. Further development and application of 
methods for low alkalinity or organic-rich soils, and 
in situ measurement, is recommended.
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