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Influences on tidal channel and aquaculture 
shrimp pond water chemical composition 
in Southwest Bangladesh
Matthew Dietrich*  and John C. Ayers 

Abstract 

Detailed geochemical studies of both major and minor elements in Bangladesh surface waters are sparse, particularly 
in shrimp aquaculture pond environments. Therefore, water samples from shrimp aquaculture ponds and tidal chan-
nels were collected in high precipitation (July) and low precipitation (May) months from 2018–2019 in Southwest 
Bangladesh and analyzed for complete water chemistry. Selenium (Se) and arsenic (As) were elevated above WHO 
guidelines in 50% and ~ 87% of samples, respectively, but do not show any recognizable spatial patterns. Shrimp 
pond and tidal channel water compositions in the dry season (May) are similar, illustrating their connectivity and mini-
mal endogenous effects within shrimp ponds. Tidal channels are less saline in July than shrimp ponds still irrigated 
by tidal channels, suggesting that either farmers limit irrigation to continue farming saltwater shrimp, or the irrigation 
flux is low and leads to a lag in aquaculture-tidal channel compositional homogenization. δ18O and δ2H isotopic com-
positions from samples in May of 2019 reveal tidal channel samples are closer to the local meteoric water line (LMWL) 
than shrimp pond samples, because of less evaporation. However, evaporation in May shrimp ponds has a minimal 
effect on water composition, likely because of regular drainage/exchange of pond waters. Dissolved organic carbon 
(DOC) is positively correlated with both δ18O and δ2H in shrimp ponds, suggesting that as evaporation increases, DOC 
becomes enriched. Multiple linear regression reveals that As and Se can be moderately predicted (adjusted  R2 values 
between 0.4 and 0.7, p < 0.01) in surface waters of our study with only 3–4 independent predictor variables (e.g., Ni, V 
and DOC for Se prediction; Cu, V, Ni and P for As prediction). Thus, this general approach should be followed in other 
regions throughout the world when measurements for certain hazardous trace elements such as Se and As may be 
lacking in several samples from a dataset.
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Introduction
Although there has been much research in Bangladesh on 
groundwater and contaminants such as arsenic (As) (e.g., 
[4, 7, 17, 38, 47, 48]), less emphasis has been placed on 
surface water chemistry, especially in Southwest Bangla-
desh. Multiple studies in Bangladesh have geochemically 
examined tidally dominated rivers (hereafter called tidal 

channels) and adjacent waterways in both temporal and 
spatial ways (e.g., [2, 3, 24, 33, 59, 63]). Studies have also 
looked at trace element concentrations in aquaculture 
ponds near the coastal region of Bangladesh [23, 32, 62] 
or in coastal Bangladesh rivers [36, 52] and nonspeci-
fied lakes/ponds [1]. However, these studies have focused 
more on risk assessment, general reporting of trace ele-
ment or major element concentrations, and overall water 
quality. While reporting concentrations and changes in 
water chemistry is useful for preliminary work, more 
detailed understanding of surface water geochemical 

Open Access

Geochemical Transactions

*Correspondence:  matthew.dietrich@vanderbilt.edu
Department of Earth and Environmental Sciences, Vanderbilt University, 
5726 Stevenson Center, 7th floor, Nashville, TN 37240, USA

http://orcid.org/0000-0002-4464-5340
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12932-021-00074-2&domain=pdf


Page 2 of 22Dietrich and Ayers  Geochem Trans            (2021) 22:2 

relationships is imperative for predicting where waters 
may have elevated concentrations of certain hazardous 
elements such as As or selenium (Se), and what ulti-
mately controls the element concentrations.

Studies thus far also have not thoroughly researched 
the relationship of tidal channel waters with aquaculture 
shrimp ponds, which are often irrigated with tidal chan-
nel water during the dry season in Southwest Bangladesh 
instead of groundwater [6] (Fig.  1). Recent studies indi-
cate that tidal channel waters often have elevated arsenic, 
especially in the dry season [6] [25], so there is concern 
that shrimp ponds and the shrimp grown in them may 
also have high arsenic.

Particularly reliant upon surface water in Southwest 
Bangladesh (e.g., Satkhira and Khulna districts) are aqua-
culture and agriculture, where rice farming, fishing, and 
shrimp farming are the primary sources of income for 
people in the area (e.g. [11]) and shrimp farming in par-
ticular has increased dramatically since the 1980s [9]. 
Shrimp ponds (bottom left of Fig. 1) are typically 1 m or 
less in depth on average and vary largely in area, although 
averaging around 3 ha, while the tidal channels irrigating 
them have variable depths ranging up to several meters.

In general, critically understanding relationships 
between trace elements in surface waters in Bangladesh 
is particularly needed because trace element chemistry 
in Asian rivers is poorly understood [28], and the aqua-
culture shrimp ponds and tidal channels in Southwest 

Bangladesh are an innate offshoot of the large Ganges 
River system. Additionally, better understanding of water 
chemistry in Bangladesh aquaculture environments has 
worldwide applicability to coastal aquaculture systems 
in other countries such as India and Taiwan. Thus, this 
study aims to holistically examine possible influences 
(i.e., precipitation, evaporation, irrigation) on the compo-
sition of tidal channel and shrimp pond water in South-
west Bangladesh, and to use multivariate techniques 
to assess whether As and Se concentrations can be pre-
dicted in surface waters. The main research questions are: 
(1) Do early monsoonal rains affect water compositions 
of shrimp ponds and tidal channels differently? (2) Are 
any elements or other geochemical parameters sensitive 
to endogenous changes within shrimp ponds following 
tidal channel irrigation? and (3) Can Se and As surface 
water concentrations be reasonably explained and mod-
eled by a small subset of other variables through multiple 
linear regression modeling?

Methods and study area
Study area
Southwest Bangladesh is a tidally influenced area near 
the coast of the Bay of Bengal (Fig. 2), with the tidal influ-
ence extending just north of Khulna City in the dry sea-
son (e.g., [16]). Studies in the area have shown that tidal 
influence on tidal channel water composition varies by 
season and the amount of freshwater discharge from 

Fig. 1 Conceptual diagram of the water cycle within Southwest Bangladesh and example images of tidal channels that irrigate shrimp ponds (both 
a typical main channel like that sampled in this study (A) and an inlet from a smaller, connective channel (B). A typical shrimp pond (C). A video of 
tidal channel irrigation to a shrimp pond is provided as Additional file 2
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upstream [53, 54]. Specifically, salinity ranges between 
0 and 2 parts per thousand (ppt) between the tides, and 
pH ranges 0–0.4 units between tides throughout the year 
depending on location within the Sundarbans [53, 54]. 
This tidal area has not been as extensively studied as the 
northern floodplains in the G-B-M delta or the Himala-
yan foothills, where river water and sediment composi-
tions were previously researched (e.g., [14, 43, 61, 64]). 
The tidal region includes part of the Sundarbans man-
grove forest, although much of this forest was converted 
to agricultural islands back in the 1960s–1970s (e.g., 

[51] and the references cited therein). These agricultural 
islands are also known as “polders,” and are surrounded 
by embankments, shielding these islands from storm 
surges or tidal inundation [5, 51].

Bangladesh experiences a strong monsoonal climate, 
where biseasonal precipitation causes approximately 80% 
of yearly rainfall to occur between the months of June to 
September (e.g., [11, 18, 51]). This large seasonal differ-
ence in precipitation can lead to vast changes in surface 
water chemistry during different seasons, particularly in 
coastal regions (e.g., [2, 59, 63]).

Fig. 2 Map of the study area and the sample sites in Southwest Bangladesh, with the dark green area representing the Sundarbans natural 
mangrove forest
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Sample collection
Surface water samples were collected in both the early 
monsoon season in July of 2018 and 2019, and during 
the end of the dry season in May of 2019. July average 
precipitation in Khulna is ~ 363 mm, while May average 
precipitation is ~ 180  mm [10]. All samples were taken 
within the general vicinity of Southwest Bangladesh, and 
predominantly within the Khulna District (Fig. 2). All but 
one shrimp pond aquaculture sample (KA-10) were irri-
gated with tidal channel water.

Samples were collected as follows:

• July: 11 shrimp ponds + 5 tidal channel samples + 1 
rainwater sample (n = 17)

• May: 10 shrimp ponds + 4 tidal channel samples 
(n = 14)

May and July shrimp pond samples were taken in the 
same relative locations to avoid differences in tidal influ-
ence and thus allow more direct comparison. Tidal chan-
nel samples were taken at different locations between 
seasons, but those used for dissolved ion concentra-
tion comparison in spider diagrams (P32-TC, P32-1 and 
P32-2 in July; MD-TC-16, MD-TC-18, MD-TC-19, and 
MD-TC-22 in May) were collected in channels that irri-
gated the studied shrimp ponds in both seasons. One 
rainwater sample was collected in July of 2018 from a tin 
roof collection device.

Surface water samples were collected with plastic 
syringes and buckets from the upper 1  m of the water 
column and were rinsed at least once between each sam-
ple. Samples were filtered in the field with a syringe and 
0.45  µm polypropylene filter into 60- and 125-mL bot-
tles. May 2019 and July 2019 samples were all filtered 
into 60 mL bottles until the bottles were completely filled 
to prevent oxygen and hydrogen isotope exchange with 
headspace before analysis. Only 2019 samples were col-
lected for isotopic analysis because in our lab, analytical 
capabilities for oxygen and hydrogen isotopes were not 
yet available in 2018. The July 2018 tidal channel and 
rainwater samples were placed in 500  mL bottles, with 
the tidal channel sample filtered in the laboratory with a 
0.45 μm polypropylene filter (not filtered in the field).

Field measurements
A Hach Hydrolab DS5 was used to gather in  situ sur-
face water measurements of pH, oxidation–reduction 
potential (ORP) in millivolts (mV), specific conductiv-
ity (SpC) in microsiemens per centimeter (µS/cm), and 
temperature in degrees Celsius (˚C) for July 2018 shrimp 
pond, May 2019 shrimp pond, and May 2019 tidal chan-
nel samples following the methods of Ayers et al. [6]. July 

2018 tidal channel SpC was measured with a hand-held 
SpC Hanna probe while one July 2018 shrimp pond sam-
ple (KA-1) SpC value was estimated through total ion 
summation.

ORP measurements from the Hach Hydrolab DS5 were 
used for distinguishing oxic and anoxic conditions for 
surface water samples, as described in [6, 7]. ORP (rela-
tive to the Ag/AgCl redox couple) was converted to Eh 
(relative to the standard hydrogen electrode (SHE)) in 
Table 1 by adding 187 mV to each field measurement.

Sample preparation and analyses
2–10 mL of each filtered sample was acidified with a drop 
of concentrated nitric acid  (HNO3) in the laboratory for 
inductively coupled plasma (ICP) analysis, while approxi-
mately 20–30 mL of sample was left unacidified and used 
for ion chromatography (IC) and total organic carbon 
analysis (TOC). Approximately 2 mL of filtered, unacidi-
fied May and July 2019 samples were transferred to glass 
vials via plastic pipette immediately upon opening the 
60 mL bottles for δ18O and δ2H isotope analysis.

All acidified water samples were analyzed on a Per-
kin Elmer NexION 2000B ICP-MS in both standard and 
kinetic energy discrimination (KED) modes using EPA 
Method 6020B at Vanderbilt University for the elements 
As, Be, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, Ti, 
Tl, V, and Zn. All acidified surface water samples were 
also analyzed on an Agilent 5110 VDV ICP-OES using 
EPA Method 6010D at Vanderbilt University to report 
the ions: Al, As, B, Ba, Ca, Fe, K, Mg, Na, P, S, Si, and 
Sr. All 2018 filtered, unacidified surface water samples 
were analyzed for inorganic and organic carbon content 
with a Shimadzu model TOC-V CPH/CPN using ASTM 
Method D-7573-09 at Vanderbilt University, as described 
in [6, 7], while samples from 2019 were all analyzed via a 
Shimadzu model TOC-LCPH using EPA Method 9060A. 
Unacidified water samples were also analyzed for Cl, F, 
Br,  NO3,  PO4, and  SO4 with a Metrohm 881 Compact IC 
Pro using SW-846 EPA Method 9056.  NO3,  PO4 and F 
were omitted from the reported results because nearly all 
values were < MDL.

May and July 2019 water samples were run on a Pic-
arro L2130-i isotope and gas concentration analyzer at 
Vanderbilt University to provide δ18O and δ2H isotope 
values relative to Vienna Standard Mean Ocean Water 
(VSMOW). Each sample was run twice, with the mean 
of four measured injections (following four preparatory 
injections) used to generate δ18O and δ2H isotope val-
ues for each sample run. Average values of the two sam-
ple runs are reported. Average precision (1σ) between 
replicate sample runs was ~ 0.1‰ for δ2H and ~ 0.02‰ 
for δ18O. Salt liners were used to prevent damage from 
salt precipitates. USGS standards USGS45, USGS49 and 
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Table 1 Sample location information, in-situ measurements, and saturated minerals in solution

Sample Type Latitude Longitude Date-Timea CIB (%)b Saturated 
 mineralsd

pH SpC (µS/cm)e Eh (mV)g

KA-5-Blank Blank

KA-7-Blank Blank

KA-17-Blank Blank

KA-20-Blank Blank

KA-1 Shrimp Pond July 22.47861853 89.47911456 7/6/2018 0.65% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.09 28403.0 399.0

KA-2 Shrimp Pond July 22.50075958 89.43157628 7/7/2018 − 3.61% Kfs, Ms, Dol, Cal, Ilt 8.50 20200.0 357.0

KA-3 Shrimp Pond July 22.69571769 89.16967095 7/8/2018 − 3.41% Ms, Dol, Cal 9.00 6541.0f 377.0

KA-4 Shrimp Pond July 22.67178417 89.25978431 7/8/2018 − 2.54% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.26 20398.0 407.0

KA-5 Shrimp Pond July 22.57789021 89.30023656 7/9/2018 1.63% Ms, Dol, Cal 8.61 29595.0 390.0

KA-6 Shrimp Pond July 22.58252190 89.34350180 7/9/2018 2.03% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.44 28264.0 391.0

KA-7 Shrimp Pond July 22.44306661 89.61203278 7/10/2018 − 3.90% Dol 8.08 12203.0 600.0

KA-8 Shrimp Pond July 22.45236994 89.61284144 7/10/2018 − 3.87% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.38 9053.0 445.0

KA-9 Shrimp Pond July 22.55983540 89.60069553 7/10/2018 − 1.71% Ms, Dol, Cal 8.19 16466.0 437.0

KA-10 Shrimp Pond July 22.65947095 89.59243177 7/11/2018 − 1.44% Dol, Cal 9.28 1505.0 389.0

KA-11 Shrimp Pond July 22.70397053 89.46984816 7/11/2018 − 0.83% Dol, Cal 8.41 22440.0 436.0

P32-TC Tidal Channel July 22.51957700 89.49199400 7/6/2018 8.00% 6990.0

KA-8RW Rainwater 22.45236994 89.61284144 7/10/2018 − 1.16%

KA- 12 Shrimp Pond May 22.49975329 89.43115749 5/6/19 15:42 7.48% Kfs, Ms, Dol, Cal, Ilt 8.65 27731.0 390.0

KA- 13 Shrimp Pond May 22.51984753 89.49248609 5/7/19 9:37 8.46% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.05 31367.0 431.0

KA- 14 Shrimp Pond May 22.45304998 89.62798504 5/8/19 10:00 4.34% Kfs, kln, Ms, Dol, 
Cal, Ilt

7.97 26077.0 414.0

KA- 15 Shrimp Pond May 22.55608476 89.64831928 5/8/19 12:30 4.33% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.15 25749.0 418.0

MD-TC-22 Tidal Channel May 22.55505854 89.64806772 5/8/19 12:50 3.33% Kfs, kln, Ms, Dol, Ilt 7.67 25339.0 454.0

KA- 16 Shrimp Pond May 22.57374567 89.29286777 5/9/19 10:10 4.66% Ms, Dol, Cal 8.77 28851.0 404.0

KA- 17 Shrimp Pond May 22.58665928 89.33286479 5/9/19 11:25 6.70% Kfs, kln, Ms, Dol, 
Cal, Ilt

7.96 33034.0 443.0

KA- 18 Shrimp Pond May 22.67498980 89.26152243 5/9/19 14:00 4.79% Kfs, kln, Ms, Dol, 
Cal, Ilt

8.55 11285.0 403.0

KA- 19 Shrimp Pond May 22.69974406 89.16632039 5/10/19 10:10 7.03% Kfs, Ms, Dol, Cal 8.86 17557.0 359.0

KA- 20 Shrimp Pond May 22.69793983 89.47640710 5/11/19 9:00 3.90% Kfs, kln, Ms, Dol, Cal, 
Qz, Ilt

7.77 32046.0 474.0

KA- 21 Shrimp Pond May 22.64063033 89.58598250 5/11/19 11:00 6.41% Kfs, Ms, Dol, Cal, Ilt 8.61 26270.0 430.0

MD-TC-16 Tidal Channel May 22.38292227 89.44586719 5/6/2019 10:55 4.18% Kfs, kln, Ms, Dol, Ilt 7.56 36334.0 450.0

MD-TC-18 Tidal Channel May 22.56935935 89.49654172 5/7/2019 10:55 4.07% Kfs, kln, Ms, Dol, Ilt 7.64 29662.0 458.0

MD-TC-19 Tidal Channel May 22.86607737 89.55133013 5/7/2019 15:27 4.13% Kfs, kln, Ms, Dol, Ilt 7.63 25837.0 445.0

Hiron Point Tidal Channel July 21.81744000 89.46000000 7/22/2019 10:05 10.53%

Site-1 Tidal Channel July 22.45839000 89.28765000 7/25/2019 19:55 9.34%

P32-1 Tidal Channel July 22.51326000 89.43369000 7/26/2019 8:10 10.47%

P32-2 Tidal Channel July 22.56404000 89.46957000 7/26/2019 14:50 3.74%

Pond and Tidal 
Channel 
Geometric 
Mean

4.60%c 8.27 19842.57 421.69

Pond and Tidal 
Channel Std 
Dev

0.45 8959.77 48.00
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USGS50 were used to correct measured sample val-
ues through the USGS LIMS for Lasers data reduction 
scheme.

More details on sample preparation are included in the 
Additional file 1.

Quality control
Method blanks of samples were taken with deionized 
water in the field in July 2018 and May 2019 and ana-
lyzed for complete chemical analysis (IC, TOC, ICP-
MS, ICP-OES), and routinely show concentrations at or 
below method detection limits (Table  2). For samples 
run on the ICP-MS, ICP-OES, IC and TOC analyzers, 
periodically measured concentrations in standards were 
required to be within 15% of the known value and blanks 
were required to be below the method detection limit 
(MDL). A duplicate shrimp pond sample from May 2019 
showed all concentrations except Mn in very close align-
ment with one another (3.0% average difference in con-
centrations for all reported elements (including DIC and 
DOC) that had concentrations > 10 ppb), illustrating the 
representative nature of each sample. Method detection 
limits are listed in Table 2. Average charge-balance error 
was 4.6%, similar to the average charge-balance error in 
[6] of 3.9%.

Data reduction
Maps were generated using ArcGIS 10.6.1 and QGIS 
3.10, while RStudio and Microsoft Excel were used for 
figure generation and statistical analyses. Multiple lin-
ear regression subset selection used the “leaps” package 
in R, with 8 variables used as the max number of subsets 
[42]. The Geochemist’s Workbench 14.0 was used to gen-
erate a Piper diagram and an evaporation model in the 
React program, using sample MD-TC-22 as the input 
basis.  HCO3

− concentrations (from measured dissolved 
inorganic carbon (DIC)), charge imbalance, and mineral 
saturation indices were calculated using SpecE8 software 
in The Geochemist’s Workbench 14.0 with the default 
thermo.dat database [13]. Uncertainties are reported as 
sample standard deviation (1σ).

Results
Geochemical concentrations
Dissolved concentrations tend to be lognormally dis-
tributed, so they are summarized using the geometric 
mean. Element concentrations reflect relatively saline 
waters in shrimp ponds regardless of season, shown by 
high conservative ion concentrations approaching aver-
age seawater concentrations (Table  2). Tidal channel 
waters show more variability in conservative ion concen-
trations between sampling months compared to shrimp 
ponds. Eh values in both sampling months are gener-
ally consistent and positive in surface waters, indicative 
of oxidizing conditions (422 ± 48  mV). Including both 
sampling months (because of minimal seasonal vari-
ability in DOC), the mean shrimp pond DOC concen-
tration is 7.3 ± 4.3 mg.L−1, while the mean tidal channel 
DOC concentration is 3.1 ± 1.0  mg.  L−1, compared to a 
river world average of 5.8 mg.  L−1 and 12 mg.  L−1 median 
value in the world’s eutrophic lakes [6] and the refer-
ences therein). pH values show relatively little variabil-
ity regardless of sampling month, although shrimp pond 
waters at 8.4 ± 0.4 are markedly more alkaline than tidal 
channel waters at 7.6 ± 0.1. Out of elements with known 
adverse health outcomes in excessive quantities, Cr 
(6.6 ± 3.6 μg.  L−1) and Mn (3 ± 17 μg.  L−1) overall surface 
water values are all well below levels of health concern 
[74], while Pb, Be, Cd, and Tl were either close to detec-
tion limit or below detection limit and thus not reported. 
Ti, Sb, Fe and Mo values are also not reported because of 
either low values (e.g., nearly all May samples had nega-
tive reported Fe values) or concerns with interference 
on the ICP. However, both As (25 ± 19  μg.  L−1) and Se 
(45 ± 45 μg.  L−1) are at levels of potential health concern 
across both sampling months based on WHO and EPA 
drinking water guidelines, which are 10 μg.  L−1 for As for 
both the EPA and WHO, and 50 μg.  L−1 and 40 μg.  L−1, 
respectively, for Se EPA and WHO guidelines [70, 74].

Element and geochemical parameter correlations
Concentrations of most conservative elements are 
strongly correlated, indicative of their similar mobilities 
in solution (Additional file  1: Fig. A1). Concentrations 
of many elements that tend to behave nonconservatively 

Table 1 (continued)
a Bangladesh Standard Time (BST or GMT + 6)
b Charge imbalance error (%) between major ionic species in solution
c Arithmetic mean of absolute value (%)
d Saturated minerals have saturation index > 0 (log(Q/K))—Kfs K-feldspar; Kln kaolinite; Ms muscovite; Dol dolomite; Cal calcite; Qz quartz; Ilt illite (Note: No 
Fe-minerals because of no reported Fe)
e Acronym represents specific conductivity (SpC)
f Field measurement likely inaccurate based on major ion concentrations
g Eh is relative to the standard hydrogen electrode (SHE)
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such as As and Se do not show strong correlations, 
indicative of redox conditions and sorption/desorption 
mechanisms possibly affecting concentrations. However, 
pH and Eh measured in shrimp ponds do not correlate 
well with any elements (Additional file 1: Fig. A2). DOC, 
important in groundwater chemical reactions in Bang-
ladesh, does not show strong correlations with any ele-
ments (Additional file 1: Fig. A1).

Monthly composition differences and element enrichment 
relative to seawater
In general, lower element concentrations are seen in July 
tidal channel waters relative to May tidal channel waters 
(Fig.  3). Concentrations in July tidal channel waters, 
however, show much more variance, although noncon-
servative elements have less consistency in variation. July 
and May shrimp ponds show slight differences in aver-
age compositions, albeit with most overlap contained 
within 1σ error bars (Fig.  4a). However, Se, Cu, Cr, and 
Co are all elevated in July shrimp ponds relative to May 
shrimp ponds outside of 1σ variation. July shrimp ponds 
are slightly less saline on average than May shrimp ponds 
(Additional file  1: Fig. A3). When normalizing shrimp 
pond (Fig.  4b) and tidal channel (Additional file  1: Fig. 
A4) concentrations to that of seawater (values from lit-
erature; Additional file 1: Table A1), several elements are 
clearly enriched, such as Ba, As, Se, and Zn. Additionally, 
DOC is well enriched in shrimp ponds relative to values 
typically seen in the Indian Ocean [50], shown through 
DOC plotting well above 0 in Fig. 4a.

Tidal channel versus shrimp pond composition
May tidal channels and shrimp ponds have similar 
average compositions, although there is more vari-
ability in the nonconservative elements such as Zn and 
Ni (Fig. 5a). In July however, tidal channel and shrimp 
pond compositions are not as similar, although it is 
noted that there is high variability within July tidal 
channel samples (Fig. 5a). In general, July shrimp ponds 
have higher average concentrations of elements and 
DOC compared to July tidal channels.

Oxygen and hydrogen isotopes specific trends
δ18O and δ2H from tidal channel samples (Table 3) plot 
relatively close to the local meteoric water line (LMWL) 
(Fig.  6). Furthermore, they plot linearly between the 
LMWL and the expected value for seawater. Shrimp 
ponds plot farther off the LMWL than tidal chan-
nel samples and their stable isotope values are heavier 
(more positive) than tidal channel isotope values.

δ18O and δ2H show a strong positive correlation 
with DOC in shrimp ponds (δ18O and DOC; Spear-
man ρ = 0.92, p = 0.00047) (Fig.  7). As shrimp ponds 
become more enriched in both 18O and 2H isotopes, 
DOC increases. Tidal channel samples do not show this 
same relationship (δ18O and DOC; Spearman ρ = 0.095, 
p = 0.84), with DOC values remaining quite stable as 
δ18O and δ2H increase.

Fig. 3 Spider diagram of tidal channel arithmetic mean log10 concentrations, arranged from left to right with decreasing concentrations in 
seawater. 1σ error bars are given. Illustrates the seasonality between tidal channel samples, with larger variation in July because of early monsoonal 
rains coupled with tidal influence. July tidal channel samples P32-TC, P32-1 and P32-2 were averaged instead of other July tidal channel samples 
because of proximity to the shrimp ponds they were irrigating
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Surface water evaporation models
Through the React program in Geochemist’s Workbench 
(GWB), a simple evaporation model was performed 
(Additional file 1: Table A2) from the initial 1 kg solution 
of sample MD-TC-22 to estimate the amount of water 
evaporation that would yield the concentrations of con-
servative elements in the irrigated shrimp pond (KA-15) 
directly adjacent to sample MD-TC-22.

The model estimates that only a relatively small frac-
tion of water evaporation (~ 0.5–10%) is needed to con-
centrate non-reactive major conservative ions in solution 
to the concentrations observed in the irrigated shrimp 
pond (KA-15). When looking at modeled salinity (essen-
tially grouping all major seawater ions together), 1.5–2% 
evaporation of water can explain the relative increase 
in salinity observed from tidal channel to shrimp pond 

Fig. 4 Spider diagrams of arithmetic mean log10 concentrations in July (excluding KA-10) and May shrimp ponds. Slight seasonality is apparent 
between July and May shrimp ponds irrigated with tidal channels (A), albeit with overlap within 1σ error bars. Concentrations in shrimp ponds 
normalized to seawater (B), with log10(geometric mean/seawater) instead of arithmetic mean of log10 concentrations, with points above 0 
showing relative enrichment and points below 0 showing relative depletion compared to seawater. Two Si values are omitted from the July shrimp 
pond data because of anomalous negative values
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water (Additional file 1: Fig. A5), which is close to inter-
sample variability.

In addition to the aforementioned mass-balance 
focused geochemical model, relatively straightforward 
isotopic equations can be used to estimate the amount of 
evaporation in a shrimp pond after tidal channel input. 
Using several simplifying assumptions such as thermo-
dynamic equilibrium and an equilibrium fractionation 
factor (α (l/v)) of 1.0098 at 20˚C (even though sampling 
temperatures were ~ 30–35˚C) for 18O/16O exchange [44], 
a Rayleigh distillation equation may be used to estimate 
the residual fraction of water (f ) left in a system (Eq. 1), 
[29]:

where R is the isotopic ratio of the residual water and  R0 
is the isotopic ratio of the initial water. In a system where 
water is evaporating and the liquid phase is known to be 
more enriched in the heavier stable isotope (i.e., 18O), the 

(1)R = R0 × f (1/α−1)

term for the fractionation factor (α) becomes < 1 (1/α), 
causing isotopic enrichment in the residual liquid phase 
as f decreases. After converting the δ18O value of the irri-
gating tidal channel (MD-TC-22) to an 18O/16O ratio and 
employing the Raleigh equation, ~ 10% of evaporation 
of the initial amount of material can explain the more 
enriched 18O/16O ratio of the directly irrigated shrimp 
pond (KA-15). However, this also assumes no other influ-
ences on stable isotopes in the shrimp pond, such as pre-
cipitation, and assumes that all water was derived from 
the tidal channel. These are reasonable assumptions, as 
during the sampling period in May 2019 no measurable 
precipitation was observed, and the impermeable clays 
lining most of the ponds prevents groundwater exfiltra-
tion or seepage from other water sources [6, 7].

The discrepancy between the estimated 2% evaporation 
based on salinity and 10% evaporation based on isotopes 
may be in part due to slight non-conservative processes 
occurring in ponds such as ion exchange that affect salt-
water ions, and our isotopic evaporation model is merely 

Fig. 5 Spider diagrams showing arithmetic mean log10 concentrations in shrimp ponds (excluding KA-10) and tidal channel waters. Strong 
similarity is seen between May shrimp ponds and the tidal channels irrigating them (A). Less similarity is seen in July (B), with large variance seen 
in July tidal channels and lack of overlap between the two water types. Two Si values are omitted from the July shrimp pond data because of 
anomalous negative values
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an estimate, as we assume an open system with Rayleigh 
fractionation. In reality, the system is likely somewhere 
between an ideal open and ideal closed system. Addition-
ally, fractionation is likely slightly different at the warmer 
temperatures (> 20˚C) that occurred during our study.

Selenium and arsenic spatial and seasonal variability
Arsenic concentrations in shrimp ponds and tidal chan-
nels are close to or above WHO drinking water guidelines 
(10  μg.  L−1) in both May and July samples throughout 
SW Bangladesh (Additional file  1: Fig. A5). There does 
not appear to be any spatial correlation between meas-
ured arsenic values in both shrimp ponds and tidal chan-
nels. Additionally, selenium values are close to or above 
WHO drinking water guidelines (40 μg.  L−1) throughout 
SW Bangladesh in tidal channels and shrimp ponds, with 
seemingly random spatial concentration trends (Addi-
tional file 1: Fig. A7). In general, spatial heterogeneity in 

Table 3 Isotopic measurements relative to VSMOW

VSMOW Isotope values are delta values relative to VSMOW (Vienna Standard Mean 
Ocean Water)

Sample Type δ18O (‰)VSMOW δ2H (‰)VSMOW

KA- 12 Shrimp Pond May 1.9 9.1

KA- 13 Shrimp Pond May − 0.1 − 3.6

KA- 14 Shrimp Pond May 0.1 − 2.3

KA- 15 Shrimp Pond May − 1.2 − 10.3

MD-TC-22 Tidal Channel May − 2.2 − 15.5

KA- 16 Shrimp Pond May 0.6 0.8

KA- 17 Shrimp Pond May − 0.9 − 7.3

KA- 18 Shrimp Pond May 2.8 13.8

KA- 19 Shrimp Pond May 3.7 21.8

KA- 20 Shrimp Pond May 1.0 2.4

KA- 21 Shrimp Pond May 2.7 13.3

MD-TC-16 Tidal Channel May − 1.4 − 9.2

MD-TC-18 Tidal Channel May − 1.5 − 11.4

MD-TC-19 Tidal Channel May − 1.6 − 12.1

Hiron Point Tidal Channel July − 2.6 − 15.6

Site-1 Tidal Channel July − 1.0 − 7.0

P32-1 Tidal Channel July − 6.7 − 44.0

P32-2 Tidal Channel July − 7.2 − 46.8

Fig. 6 Bivariate plot of δ18O and δ2H isotopes from May shrimp 
ponds and May/July tidal channels. Dry season represents samples 
collected in May, wet season in July. Local meteoric water line (LMWL)  
taken from [45]. “Seawater” is theoretical seawater at 0‰ δ18O and 
δ2H, with a large symbol plotted to represent deviation from exact 
0‰ isotopic values in the Bay of Bengal

Fig. 7 Bivariate plot of δ18O from May shrimp ponds and May/
July tidal channels showing DOC increasing with enrichment of 
isotopes in shrimp ponds. Spearman correlation coefficients (DOC is 
non-normally distributed) of 0.92 between δ18O and DOC in shrimp 
ponds (p = 0.00047) and 0.095 in tidal channels (p = 0.84)
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surface water trace element compositions appears to be 
the norm.

While both Se and As are within 1σ variation in May 
and July tidal channels (Fig.  3), Se is greater in July 
shrimp ponds compared to May shrimp ponds outside of 
1σ variation (Fig. 4a). Arsenic is within 1σ variation when 
comparing May and July shrimp ponds (Fig. 4a).

Multiple linear regression
Best subsets multiple linear regression (details on vari-
able selection in the Supplementary Document) suggests 
that the variables Cu, P, V and Ni can explain most As 
variance (Fig. 8), with an adjusted  R2 of 0.39 (p = 0.006) 
(Additional file  1: Table  A3). Their significance is sup-
ported by V, Ni, and Cu each having p-values < 0.05 when 
looking at those four variables together as a linear regres-
sion fit for As (Additional file 1: Table A3). For Se, linear 
regression using the concentrations of only V, Ni, DOC, 
and Cl result in one of the best adjusted  R2 values (0.74) 
(Additional file  1: Table  A4; Fig.  8), and each variable 
has a p-value < 0.01 (Additional file  1: Table  A4). When 
removing Cl from the predictive model, the adjusted 
 R2 becomes 0.67 (p < 0.0001) with each variable (V, Ni 

and DOC) having a p-value < 0.01 (Additional file  1: 
Table A5).

Details of other models and violations of multiple lin-
ear regression assumptions are provided in the Addi-
tional file 1.

Discussion
Trace element enrichment in surface waters
Trace elements of initial focus in this study were Mn and 
As, because of their known elevated concentrations in 
groundwater in the region (and potential to enter sur-
face water through groundwater irrigation upstream or 
exfiltration) and known adverse health effects in exces-
sive quantities (e.g., [27, 34, 56, 58]). Furthermore, [6] 
measured elevated As > 10 μg.  L−1 (WHO drinking water 
guideline, [74]) in 78% of shrimp ponds on Polder 32 in 
SW Bangladesh (several samples in this present study 
are from/around the same polder), with 71% of May tidal 
channels around Polder 32 containing As > 10 μg.  L−1 as 
well. [6] also measured Mn > 400 μg.  L−1 (WHO health-
based value, [74]) in 6% of surface water samples.

In this study, however, no dissolved Mn concentra-
tions were above the WHO health-based value of 400 μg. 
 L−1 [74] in either shrimp ponds or tidal channels, which 
is expected based on Mn solubility decreasing when pH 
is > 6, due to the formation of solid-phase Mn oxides and 
hydroxides (e.g., [35]). Thus, elevated Mn values were 
reported in some of [6]’s shrimp pond samples despite 
similar pH and redox conditions. Arsenic was elevated 
above the WHO standard in almost all shrimp pond and 
tidal channel samples regardless of season, with ~ 87% 
containing As > 10  μg.  L−1 (Table  2). This supports data 
from [6] where elevated As in SW Bangladesh surface 
waters was also reported. However, dissolved As is not 
expected to be as elevated in near-neutral pH, oxidizing 
conditions such as those seen in surface waters (e.g., [6, 
65]), and thus more research on As cycling at the ground-
water-surface water interface in Bangladesh is needed 
(e.g., [12]).

Arsenic values were > 10  μg.  L−1 in 75% of July sam-
ples (shrimp pond and tidal channels) during the early 
monsoon in this study, while [6] measured only 11% of 
tidal channels in October with As > 10 μg.  L−1. This sug-
gests that the monsoon rainfall has not yet reached a 
high enough continuous level in July to thoroughly dilute 
the source of surface water As compared to October. In 
Khulna the average precipitation in the preceding four 
months were ~ 1,261  mm in October, only ~ 142  mm in 
May, and ~ 627 mm in July [10].

Because there were no previous reports of high Se in 
SW Bangladesh surface waters, it was not an initial ele-
ment of concern going into this study. Furthermore, Se 
has been reported as low in Bangladesh groundwater 

Fig. 8 Multiple linear regression models for grouped variables initially 
selected for Se and As, with adjusted  R2 values along the y-axis. The 
best model was computed for each subset size (e.g., each amount of 
predictor variables utilized in the overall model). n = 25 because of 
some samples missing predictive variable measurements and thus 
being omitted, which also explains the slight discrepancy between 
multiple linear regression analyses completed with more samples (i.e., 
Additional file 1: Table A4)
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(e.g., [26, 27, 55]), so even if heavy groundwater irrigation 
or exfiltration could affect surface water concentrations, 
Se was not expected to be elevated. However, dissolved 
Se was found to be > 50 μg.  L−1 (EPA MCL; [70]) in 50% 
of all samples and > 40 μg.  L−1 (WHO guideline; [74]) in 
50% of all samples (Table  2), with substantially higher 
average concentrations in the July shrimp ponds com-
pared to May shrimp ponds (Fig. 4a). While low levels of 
Se intake can lead to nutritional deficiencies in humans 
such as impaired growth, or thyroid function abnor-
malities (e.g., [73]), excessive Se intake can be toxic for 
humans and animals, particularly for inorganic species 
of Se [68]. However, when shrimp ponds are often con-
verted to rice paddies in the wet season in SW Bangla-
desh, the chemically reducing paddy sediment likely 
leads to the formation of insoluble elemental Se [73].

When normalized to average concentrations in sea-
water, As, Se and Mn are all enriched in shrimp ponds 
(Fig. 4b), while As and Se are also enriched in tidal chan-
nels (Additional file  1: Fig. A4). Thus, the sourcing of 
these “enriched” elements cannot be explained by seawa-
ter from the Bay of Bengal alone, and must have outside 
sources such as riverine flow, direct anthropogenic input 
(fertilizers or other chemical supplements), or ground-
water flow. The higher Se concentrations in July shrimp 
ponds versus May shrimp ponds is difficult to explain 
(Fig.  4a), particularly because the same distinct sea-
sonality is not seen in tidal channels (Fig. 3). A possible 
explanation is that desorption mechanisms are at work 
in the July shrimp ponds, although there are no correla-
tions between Se and Eh or pH to suggest this is redox 
or pH influenced (Additional file 1: Fig. A2). Because col-
loids can have an important influence on trace elements 
in solution (e.g., [28]), future spectroscopy and speciation 
analyses may help identify whether they play an impor-
tant role in enrichment and seasonality in Bangladesh.

Tidal channel and shrimp pond connectivity
Strong compositional similarities were seen between 
May shrimp ponds and the tidal channel sources irri-
gating them (Fig.  5a). This suggests that there is little 
compositional change within the shrimp ponds after 
irrigation, although there is more variance between non-
conservative elements, suggesting that sorption/desorp-
tion reactions may be occurring after shrimp ponds have 
been irrigated. This may particularly be true for cation 
species like Ni and Zn, which may undergo desorption 
in more saline waters due to competition for sorption 
sites with salt cations such as Ca and Na (e.g., [60, 66]). 
Across all dissolved water samples in this current study, 
moderate positive correlations between metal cations 
such as Co, Ni, and Cu (Additional file 1: Fig. A1) suggest 
similar geochemical processes occurring in the natural 

environment, such as sorption/desorption effects. July 
shrimp ponds show much less compositional overlap 
with July tidal channels (Fig. 5b). However, there is high 
variance of dissolved ion concentrations within July tidal 
channel samples (Fig.  3), which could be indicative of 
salinity fluctuation closely tied to rainfall and river dis-
charge. July shrimp ponds and tidal channels may not 
be as similar compositionally because of shrimp farmers 
limiting irrigation of less saline waters to prolong harvest 
of brackish water shrimp varieties, or because of slow 
mixing rates between the irrigation source (tidal chan-
nels) and the shrimp ponds, which may not become com-
plete until late in the monsoon season (i.e., late August 
or September). Future work analyzing water fluxes in and 
out of shrimp ponds over time would help better quantify 
the mixing of pond water and irrigation source.

Enrichment of As and Se
Arsenic and selenium concentrations vary widely 
throughout the region. However, they are both ubiq-
uitously elevated > WHO drinking water guidelines in 
May and July shrimp ponds and tidal channels (Addi-
tional file  1: Figs. A6, A7). The widespread occurrence 
of high As and Se concentrations throughout the region 
suggests that As and Se are predominantly not locally 
point-sourced.

Arsenic may be sourced from arsenic-rich groundwater 
in the region (often > 10 μg.  L−1) as previously suggested 
[6], upstream weathering in the Himalayas, or anthro-
pogenic effluent run-off from cities upstream such as 
Khulna. Because As shows little to no correlation with 
conservative ions found in seawater and tends to behave 
nonconservatively (Additional file  1: Fig. A1), it is diffi-
cult to deduce whether As increases as more groundwa-
ter is present in the system, particularly because there are 
two possible lower salinity end-members (riverine flow 
from upstream and groundwater flow) with potentially 
different As concentrations. It is noted that a January (dry 
season) freshwater river sample in the nearby Meghna 
River (where groundwater As concentrations are > 10 μg. 
 L−1) had As < 10 μg.  L−1 [12], although this river has a dif-
ferent drainage basin.

Arsenic concentrations in this study are also much 
greater than surface waters sampled in 2016 in the same 
geographic region [8]. The differences in As concentra-
tions between [8] and both this study and [6] may be 
attributed to small sample size, overall less saline (and 
thus potentially more diluted) samples in Ayers et  al. 
[8], and sample location heterogeneity, as all three stud-
ies used similar methodology. For example, if ground-
water exfiltration is a possible source of As to surface 
waters, sampling locations from [8] may receive different 
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exfiltration rates of groundwater because of widespread 
geologic heterogeneity in the area (e.g., [7]).

Selenium concentrations higher than average seawater 
in estuaries can be caused by conservative mixing of pol-
luted/enriched Se river water and relatively Se-depleted 
seawater, such as in the Solent area in mid-southern Eng-
land [46] or the Rhone river delta off the Mediterranean 
Sea [31]. Anthropogenic input of Se was documented in 
the San Francisco Bay estuary from both sewage treat-
ment plants and oil refineries, albeit the concentrations in 
the mixed estuary samples were much lower than those 
seen here [21, 22]. Selenium was also elevated relative to 
natural background in agricultural irrigation drainage in 
central California in the mid-1980s [40]. Thus, Se may be 
sourced from sewage, oil refineries, or agricultural run-
off in the area. It is also interesting that Se concentrations 
are much higher in our samples from 2018 and 2019 
(regardless of season) compared to results from surface 
waters in the same general study area in 2016 analyzed 
using the same methods [8]. One possible explanation 
for this is that Se is anthropogenic and the source of its 
release into the dissolved load began after sampling in 
2016, potentially from industrial centers in Khulna [25], 
while another possible explanation is that the overall less 
saline samples taken in 2016 were more diluted with rain-
water or other sources than ours in 2018 and 2019, thus 
lowering Se concentrations.

Recently, in the Ganges River system, “hot spots” of 
elevated trace element concentrations (relative to “back-
ground” in the study) were observed near large urban and 
industrial areas, but these concentrations became diluted 
by other river tributaries downstream [15]. Thus, a city 
like Khulna could be a source of Se or other trace ele-
ments, and dilution is limited until either the tidal chan-
nels empty into the Bay of Bengal or it becomes peak 
monsoon season. Regardless of the source, a dramatic 
increase in Se input would be necessary for an increase 
in surface water concentrations from ~ 0.5–2  μg.  L−1 in 
2016 to ~ 10–200 μg.  L−1 in 2018–2019.

Surface water isotopic composition, trends, 
and evaporative effects
δ18O and δ2H isotopes in surface waters can be useful 
proxies for illustrating mixing or evaporative processes. 
Any samples plotting on the local meteoric water line 
(LMWL) are theoretically local precipitation, while sam-
ples plotting to the right of the LMWL have undergone 
fractionation, which can be interpreted as evaporation 
[29], or mixing with isotopically enriched water such 
as seawater. All tidal channel samples plot close to the 
LMWL and trend towards the isotopic value of seawa-
ter as they become heavier or more enriched, suggesting 
they have undergone minimal evaporation and represent 

mixing between rainwater and seawater (Fig. 6). Dry sea-
son (May) shrimp pond samples are heavier in δ18O and 
δ2H and plot farther off the LMWL compared to tidal 
channel samples, suggesting they have undergone more 
evaporation and are not simply depicting mixing between 
rainwater and seawater.

However, even though shrimp ponds are likely under-
going more evaporation, there is not a positive correla-
tion with isotope values and salinity (SpC) (Additional 
file 1: Fig. A8). A positive correlation would be expected, 
because as water evaporates, conservative ions should 
stay in solution and become more concentrated. The 
lack of an observed positive correlation is likely a con-
sequence of each shrimp pond having different starting 
salinities following irrigation from tidal channels, with 
concentration variations in the tidal channel irrigation 
source “masking” the relatively minor effects of evapo-
ration on conservative salt ions. However, when looking 
at a shrimp pond and irrigating tidal channel directly 
adjacent to it, slight evaporative enrichment occurs with 
conservative elements, while several nonconservative ele-
ments are depleted in shrimp ponds (i.e., Mn and P; those 
less likely to desorb from saltwater cation exchange), pos-
sibly due to mineral precipitation or sorption onto sedi-
ment surfaces (Additional file 1: Fig. A9).

Evaporative models further illustrate the aforemen-
tioned point that although evaporation is likely occur-
ring in the shrimp ponds more than the irrigating tidal 
channels, the amount of evaporation has little overall 
influence on major element concentrations in solution 
(Additional file  1: Fig. A5). Evaporation appears low in 
May (≤ 10%) and does not significantly affect element 
concentrations in shrimp ponds. This is likely a result of 
regular shrimp pond drainage of wastes and replenish-
ment from new tidal channel water, which would reduce 
water residence time and the effects of evaporation. 
However, the evaporation models were based on a sam-
ple close to high tide and are thus minimum estimates of 
evaporation, although in the nearby Bangladesh Sunda-
rbans, salinity changes between high and low tide in the 
dry season tidal channels are often around ~ 1ppt or less, 
with some tidal channels seeing practically no salinity 
change between tides at all [53, 54].

Trace elements of interest, such as As and Se, also do 
not show any clear trends with stable isotopes (Addi-
tional file  1: Fig. A10). Weak to moderate relationships 
are seen with all other elements as well (Additional file 1: 
Fig. A11). Essentially, evaporation is not great enough to 
overcome the large variance in starting compositions of 
the shrimp pond water, or the effects of nonconservative 
element behavior are larger than the effects of evapora-
tion, effectively erasing any possible correlation between 
stable isotopes and nonconservative behaving elements.
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DOC shows a strong positive relationship with sta-
ble isotopes (Fig.  7). As δ18O and δ2H isotopes become 
heavier in shrimp ponds, DOC increases as well, likely 
because these variables are affected by endogenous pro-
cesses in shrimp ponds (e.g., biological processes or 
evaporation), while other geochemical parameters are 
more affected by exogenous processes (e.g., upstream 
rock weathering, seawater mixing). For example, as 
shrimp pond waters undergo more evaporation, they 
become more stagnant with lower flow conditions, algae-
rich, and produce DOC through algal photosynthetic 
activity (e.g., [19]). Additionally, all shrimp ponds have 
similar DOC concentrations in their irrigation source (as 
seen with little variation in tidal channel DOC values in 
Fig.  7), which allows identification of the small changes 
caused by evaporation. DOC values do not show a rela-
tionship with isotopes in tidal channels because tidal 
channel isotopic values are predominantly influenced by 
rainwater-seawater mixing instead of evaporation.

Lastly, it must be noted that expanding isotopic analysis 
of shrimp pond waters to other months/seasons may be 
useful for helping determine geochemical relationships 
as well, particularly because when excluding isotopes, 
multidimensional scaling (MDS) shows July shrimp 
ponds are distinct from other samples (Additional file 1: 
Fig. A12).

Multiple linear regression and predictors of As and Se
Nearly all our samples plotted similarly to seawater in a 
Piper diagram (Additional file 1: Fig. A13), and were thus 
collectively used in multiple linear regression to assess 
important predictor variables for As and Se, even though 
most elements showed large variability in concentration.

Multiple linear regression illustrates that Ni, P and V 
are important predictor variables for Se and/or As in 
most water samples (Fig. 8). Phosphorus is regarded as a 
“chemical analog” to As, and like As (as pentavalent arse-
nate) in oxidized aqueous environments, P is mainly in 
an oxyanion form (as  PO4

3−) [69]. However, in the main 
predictive model for As, P is positively correlated (Addi-
tional file  1: Table  A3), which would suggest that even 
though both elements are likely negatively charged spe-
cies in solution, their concentrations are not explained 
by competitive adsorption. Vanadium is likely predomi-
nantly an oxyanion as well given the pH and oxidizing 
conditions of the surface water samples, with the most 
common ion of V being  H2VO4

− in natural waters [20]. 
Because V is positively correlated with As in the pre-
dictive model (Additional file  1: Table  A3), it may also 
behave similarly in solution but not compete directly for 
sorption sites. However, Ni is most often a cation species 
with a valence of + 2 in natural waters [39]. When analyz-
ing primary influencing variables for As (Cu, V, Ni and P), 

it is clear that only Ni is negatively correlated, illustrat-
ing that Ni may improve the model because of different 
chemical behaviors (i.e., sorption affinities) as a cation in 
solution (Additional file 1: Table A3).

Selenium also exists as oxyanions in oxidizing environ-
ments such as surface waters [73]. When looking at the 
predictive variables V, Ni, and DOC for Se,V has a nega-
tive coefficient in the model while Ni has a positive coef-
ficient (Additional file 1: Table A5). This is opposite that 
of the main As model (Additional file 1: Table A3). Thus, 
for Se, even though V is likely an anion in solution and 
Ni a cation, the anion is associated with a decrease in Se 
in the model. This may be due to competitive sorption 
properties of Se and V on solid particle surfaces (particu-
larly with selenite on Fe-oxyhydroxides or clay minerals), 
which would increase V in solution as Se sorbs. Ni may 
complex with aqueous species that behave similarly to Se 
but do not compete with sorption sites.

pH is important to include in modeling because of 
its known effects on speciation and mobility of Se and 
As (e.g., [69, 73]). However, models that include pH do 
not significantly improve As or Se prediction (Fig.  8), 
potentially due to relatively small variance in pH values 
(Table 1). Thus, pH does not likely have a large, statisti-
cally significant influence on either Se or As concentra-
tions in these surface waters, although it is acknowledged 
that pH is important in speciation of these elements and 
thus their chemical characteristics in solution.

When adding isotopes to predictive modeling to deter-
mine whether evaporation/mixing may affect Se and As 
predictability, the adjusted  R2 values for both Se and As 
increase to both 0.70 (p = 0.016) and 0.90 (p = 0.0041), 
respectively (Additional file  1: Tables A6, A7), but only 
14 samples are included in the analysis, omitting all July 
shrimp ponds. The influence of isotopes must be taken 
with care, as clear bivariate relationships between Se, As 
and δ18O (and δ2H) are not apparent (Additional file  1: 
Fig. A10), and the inclusion of both isotopes (δ18O and 
δ2H) in the Se model (Additional file 1: Table A7) clearly 
violate the multiple linear regression assumption of no 
multicollinearity among predictor variables. However, 
future work investigating the predictive nature of stable 
isotopes for trace elements in surface water or ground-
water modeling may be warranted because as proxies of 
mixing or evaporation, O and H isotopes may provide 
additional insight as to where certain elements originated 
from or if evaporation concentrated elements in solution.

Additionally, because organic matter such as DOC 
can affect trace elements in multiple ways, such as com-
plexing with As species or competing for sorption sites 
(e.g., [41, 72]), it was another geochemical parameter 
worth examining. For Se, it was found that the predic-
tor variables DOC, V, and Ni resulted in an adjusted  R2 
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of 0.67 (p < 0.0001) (Additional file 1: Table A5). Thus, Se 
may also be affected by DOC, such as by surface water 
reoxidation of biogenic elemental Se (BioSe) that origi-
nated from microbes [73] in high DOC waters. More 
research in shrimp pond elemental cycling would help 
shed insight on this. Lastly, it is apparent that adding Cl 
as a representative saltwater ion to the variables DOC, V 
and Ni improves the predictive model (Additional file 1: 
Table  A4), which may be indicative of slight seawater 
mixing or seasonality effects on aqueous Se. However, it 
is noted that Cl does have a strong positive correlation 
with V (Additional file 1: Fig. A1), and thus violates the 
assumption of no multicollinearity for multiple linear 
regression.

Applicability of Se and As models
While these models do not identify the mechanisms 
that control As and Se concentrations in shrimp ponds 
and tidal channel waters, they are very useful in gauging 
what elements/geochemical parameters are most impor-
tant in influencing As and Se concentrations in surface 
waters. This extends to upstream (non-headwaters) Gan-
ges River samples [15], their Table S4), where Cu, Vi, and 
Ni result in a great multiple linear predictive model fit 
for As (adjusted  R2 = 0.64, p = 7.2e-15) (Additional file 1: 
Table  A8). Additionally, when examining tidal channel 
samples from Ayers et  al. [8], predicting As with Cu, V, 
Ni, and P results in a great overall fit as well (adjusted 
 R2 = 0 0.74, p = 0.024) (Additional file 1: Table A9). How-
ever, Se predictive modeling for tidal channels in Ayers 
et al. [8] is much poorer, with DOC, V, and Ni only result-
ing in an adjusted  R2 of 0.24 (p = 0.17). Nevertheless, the 
general approach of multiple linear regression with sev-
eral important predictor variables such as Ni and V or 
other geochemical analogues appears to be applicable to 
other surface water bodies, particularly rivers, and can be 
especially useful in better understanding and predicting 
the concentration of As in solution. Further research in 
quantifying Se in surface waters will help in understand-
ing what controls/predicts its geochemical variability.

These models also provide a way to estimate As and 
Se concentrations in Bangladesh surface waters with-
out direct measurements of As or Se. Model validation 
using other published datasets indicates that the model 
parameters obtained in this study do not produce model 
predictions that agree well with observed As and Se con-
centrations (i.e., Additional file  1: Fig. A14). However, 
the general approach used here can help improve pre-
dictions and measurements in other regions throughout 
the world, particularly when several geochemical param-
eters may be missing from samples within an area. For 
example, if a study has only analyzed As or Se in 15% of 
samples, but the remaining samples contain potentially 

important predictor variables such as Ni or V, a mode-
ling solution can be applied to estimate As or Se in the 
remaining samples.

Although this study assumed linear relationships in 
predictive modeling, future work involving nonlinear 
predictive modeling techniques such as machine learning 
techniques (i.e., boosted regression trees) is warranted, as 
these techniques have been shown to outperform multi-
ple linear regression predictive modeling in groundwater 
[49].

Selenium and arsenic antagonistic relationship
Se is known to combat the toxic effects of As, and As is 
known to inhibit Se toxicity (e.g., [30, 67, 68]). Elevated 
Se and As can be taken up by biological organisms, and 
may eventually sorb onto soils/sediment. This is particu-
larly relevant for As in the area, as many shrimp ponds 
are utilized for rice farming in the wet season [6], where 
flooded soils could remobilize sorbed As through reduc-
tive dissolution of Fe oxyhydroxides (e.g., [57]). However, 
even if Se becomes elevated in soils from tidal chan-
nel irrigation, the reducing conditions in flooded rice 
paddy soils could lead to immobile elemental selenium 
being formed, which is not bioavailable [73]. Thus, rice 
could potentially take up arsenic, but not selenium, with 
humans therefore lacking the detoxifying effects of sele-
nium when ingesting the rice. Further work is needed to 
explore the cycling and antagonistic relationship between 
Se and As in Southwest Bangladesh, such as identifying 
if sediments in contact with Se and As-rich waters are 
elevated in both those elements, what fraction is bio-
available, and if Se concentrations in tidal channel waters 
in the peak monsoon season become heavily diluted. 
Although much research in Bangladesh has examined As 
in crops such as rice (e.g., [37, 71, 72]), crop/aquaculture 
Se should be more heavily researched in Southwest Bang-
ladesh as well, particularly where Se water concentrations 
are high.

Conclusion
Through examining surface water chemistry in South-
west Bangladesh in two different months over a wide 
spatial area, it was deduced that: (1) Monthly precipita-
tion differences between May and July has a greater effect 
on tidal channel water composition compared to shrimp 
pond composition; (2) There is a large compositional dif-
ference between shrimp ponds and the tidal channels 
irrigating them in the early monsoon (July), but not in 
May; (3) Evaporation in shrimp ponds and endogenous 
pond effects in general have a relatively minimal impact 
on surface water trace element and major ion chemistry 
based on May pond data, although DOC has a strong 
positive correlation with δ18O and δ2H isotopes and thus 
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evaporation; (4) Arsenic and selenium concentrations are 
elevated above WHO drinking water guidelines in the 
majority of surface water samples and are correlated with 
other trace elements in solution such as Ni and V; and (5) 
Predictive modeling of hazardous trace elements in sur-
face waters may prove useful in future studies throughout 
the world when measurements of certain toxic elements 
cannot always be easily made.
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