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Abstract 

Clean river water is an essential and life-sustaining asset for all living organisms. The upper Ganga and Yamuna river 
system has shown signs of rejuvenation and tremendous improvement in the water quality following the nationwide 
lockdown due to the coronavirus pandemic. All the industrial and commercial activity was shut down, and there 
was negligible wastewater discharge from the industries. This article addresses the water quality assessment 
from the study area, which is based on the original data of physical parameters, major and trace elements, and stable 
isotopes (hydrogen and oxygen) systematics during the nationwide lockdown. The impact of the lockdown could 
be seen in terms of an increase in dissolved oxygen (DO). Water samples were collected from the Upper Ganga 
and Yamuna river basins (Alaknanda, Bhagirathi, and Tons rivers) during an eight-week lockdown in Uttarakhand, India. 
We discussed the signs of rejuvenation of riverine based on physical parameters, major ions, trace elements, isotopic 
ratios, and water pollution index (WPI). Results reveal that the water quality of the entire upper basins of the Ganga 
has significantly improved by 93%, reflecting the signs of self-rejuvenation of the rivers. Multivariate analysis sug-
gests a negative factor loading for an anthropogenic element ( NO−

3
 ), implying that they contribute little to the river 

water during the lockdown. Further, bicarbonate ( HCO−

3
 ) is a dominant element in both river basins. The geochemical 

facies are mainly characterized by the ( Ca2+ : Mg2+ : HCO
−

3  ) type of water, suggesting that silicate rock weathering 
dominates with little influence from carbonate weathering in the area. The positive factor loadings of some cations, 
likeHCO−

3
,Ca2+ , and Mg2+ reflect their strong association with the source of origin in the lockdown phases. Stable 

isotopic reveals that the glaciated region contributed the most to the river basin, as evidenced by the low d-excess 
in riverine water compared to anthropogenic contributions. Rivers can self-rejuvenate if issues of human influence 
and anthropogenic activities are adequately resolved and underline our responsibility for purifying the ecosystem. We 
observed that this improvement in the river water quality will take a shorter time, and quality will deteriorate again 
when commercial and industrial activity resumes.
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Introduction
The COVID-19 pandemic originated in December 2019 
in Wuhan, China, and spread quickly globally [18, 91, 
128]. Nationwide lockdown (phase-1) was imposed in 
India on March 25th, 2020, and extended up to April 
14th, 2020, to break the chain of the COVID-19 pan-
demic and extended until May 17th, 2020 (Phase-2). The 
World Health Organization apprised that there were five 
lakh confirmed cases, while more than three lakhs lost 
their lives across 216 countries due to COVID-19 [120]. 
Unfortunately, the deadly pandemic (COVID-19) con-
tinues in 2021, and from March 2021, more than 50,000 
cases have been reported in India every day and found 
maximum in May. Presently, the number of COVID-19 
deaths reported to WHO (cumulative total) worldwide to 
date is 7.1 million, and confirmed cases are 776 million 
and increasing (https:// data. who. int/).

In India, the environmental conditions were tempo-
rarily improved because of the reduced pollution load 
during the nationwide lockdown. The aerosol concen-
trations were measured at a 20-year low based on the 
satellite data on optical depth measurements over the 
Indo-Gangetic Plains (IGP). It was possible due to the 
restrictions imposed on industries, air, rail, road trans-
port, etc. [70]. The Ganga River Basin (GRB) is the 
largest source of fresh water for the most densely popu-
lated region globally [69, 79]. However, the effect of the 
COVID-19 lockdown on the water quality of the River 
Ganga was debatable. As stated by the Central Pollu-
tion Control Board (CPCB) of India, the Ganga River 
(2601 km length) has been exposed to high pollution over 
the last few decades [72]. Although the Ganga River is an 
essential life-supporting component of the rapidly grow-
ing population of India, human health is endangered due 
to its water pollution level. Earlier, the river water was 
polluted by various human activities such as industriali-
zation, urbanization, agricultural practices, and overex-
ploitation [8]. It has been stated that the pollution level 
of the riverine system has dropped during the lockdown 
period [39], as the primary pollution sources (e.g., indus-
tries, tourism activities, pilgrimage, hotels and lodges, 
shops) of the Ganga River were closed. However, the 
domestic discharges from the household continued dur-
ing the lockdown period [34].

Garrels and Mackenzie [35] raised a fundamental ques-
tion about the derivation of major ions in river water 
from its sources, which was later successfully addressed 
globally by several studies [6, 10, 13, 16, 25, 27, 30–32, 75, 
89, 98, 103, 108]. Riverine water quality across the globe 
has degraded due to unplanned urbanization, human 
intervention, population growth, and anthropogenic 
activity [7, 39, 44, 100, 103]. Monitoring the water qual-
ity of major rivers is essential as these provide water and 

food security to about 3 billion people around the globe 
[7].

Water quality monitoring to quantify the impact of 
rapid population and industrial waste in the riverine 
system in India has gained momentum in the last two 
decades [29, 54, 103]. The Ganga–Brahmaputra basin 
spreads over one million  km2 and ranks among the most 
densely populated regions, with a population density 
of > 300 people/km2, and is home to over 0.6 billion peo-
ple in India [80]. India has minimal geochemical and iso-
topic data on rivers related to water quality assessment, 
including the Ganga River and its tributaries, which 
stated how the riverine water quality has deteriorated 
over time [11, 60, 93, 103, 115].

The print and electronic media stated that the overall 
pollution in the Ganga river is down by up to 50% due 
to the imposition of lockdown [41, 76, 77, 109, 110]. That 
has made the Ganga water potable by filtering without 
further treatment [5, 45]). Dissolved Oxygen (DO), Bio-
chemical oxygen demand (BOD), and other physical 
parameters levels were improved during the lockdown, 
making the water drinking and bathing purposes [26]. 
These results were based on some observations (satellite 
data and physical parameters). Still, no geochemical and 
isotopic data is available to assess riverine water quality 
based on major ions, trace metals, and environmental 
isotopes. Based on isotope and geochemical studies, we 
report the scientific evidence for improved water qual-
ity in the Upper Ganga and Upper Yamuna River sys-
tems (UGRS and UYRS). If the concentrations of physical 
parameters, trace elements, and major ions surpass the 
permissible limit, they may harm humankind and liveli-
hood [12, 19, 73]. Thus, measuring these parameters is 
essential to understand the water quality of any water 
masses.

The quality of water from a particular source (e.g., 
riverine/lake/groundwater) can assessed by its physio-
chemical and biological parameters. A method known 
as the Water Quality Index (WQI) is classified by giving 
unequal weightage based on its importance to riverine 
water quality, but there are certain limitations to this 
method [64, 85, 116]. Therefore, to avoid complications 
and reduce the errors and sensitivity of water indexing, 
we adopted a new, improved concept called Water Pollu-
tion Index for the present study [42].

Since the analysis of a dataset of variable magnitude 
and density is challenging, multivariate statistical tech-
niques, namely Principal Component Analysis (PCA), 
can be applied to assess the water quality [3, 37, 43, 126]. 
This method requires significant sources of ions in river 
basins [58, 61, 114, 121]. The PCA provides a simple solu-
tion to the problems, whereas the conventional method 
fails to interpret the data. Hence, multi-dimensional 
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matrices and measurements have been preferred over 
new approaches to conventional ones [56].

Multivariate analysis, such as the Principal Component 
Analysis (PCA) and Hierarchical Cluster Analysis (HCA), 
are essential statistical methods to assess the water qual-
ity that includes the major sources of ions in river basins 
[63, 78, 121]. Analyzing the resulting dataset of variable 
magnitude and density is difficult. Therefore, multivariate 
statistical techniques are applied worldwide [3, 37, 43, 59, 
114, 126]. Further, the hydrogeochemical evolution of the 
river water basin can be identified through the interpre-
tation of PC loadings [4, 68].

Hydro-geochemical processes operating in the river 
basin are characterized by negative loadings on specific 
variables in terms of principal components. For example, 
low-negative loading on pH for Ca and Mg corresponds 
to high positive loading. The inverse correlation is gener-
ally seen between two negative loadings on pH and deriv-
atives of carbonate ions [62].

In extensive hydrological studies, the stable isotopes 
of oxygen and hydrogen have been used as conservative 
tracers [38]. Numerous interpretations of hydrological 
processes occurring both on the surface and within aqui-
fers have been influenced by stable water isotopes and 
solutes [50, 127]. For instance, they have been applied to 
identify water sources, flow patterns, and water mixing in 
various bodies of water [2, 38, 52]. In extensive hydrolog-
ical studies, the stable isotopes of oxygen and hydrogen 
have been used as conservative tracers [38]. Numer-
ous interpretations of hydrological processes occur-
ring both on the surface and within aquifers have been 
influenced by stable water isotopes and solutes [50, 127]. 
For instance, they have been applied to identify water 
sources, flow patterns, and water mixing in various bod-
ies of water [2, 38, 52].

We have calculated the WPI and compared the results 
with those carried out earlier in the same basin [16, 97] 
to quantify the improvement in water quality throughout 
the lockdown time. The rivers carry the products pro-
duced by continental weathering to the oceans and play a 
vital role in the evolution of global sea water [31, 32]. The 
carbonate and silicate weathering processes are also car-
ried out at alterable scales, resulting in heterogeneity in 
river water composition [16].

This article addresses the water quality assessment for 
the first time during the COVID-19 pandemic-induced 
lockdown based on the original data of physical param-
eters, major and trace elements, and stable isotopes 
(hydrogen and oxygen) systematics. We discussed the 
signs of rejuvenation of riverine water against the aver-
age geochemical composition, isotopic ratios, and water 
pollution index (WPI) of the earlier studies of this region.

The main objectives of this study are: (1) To analyze 
the impact of the lockdown on the water quality of the 
Ganga River and its major tributary, Yamuna, in Uttara-
khand; (2) To discuss issues and challenges to understand 
the magnitude of contamination and source relations and 
potential ways to improve the water quality using PCA 
and HCA; (3) To provide the essential implications for 
future restoration strategies on river rejuvenation; and 
(4) To generate the baseline data for future study on the 
water quality assessment from the Ganga river system.

Study area
General description
Present work is carried out in the headwaters of the 
Ganga and Yamuna river systems (UGRS) in the Hima-
layan region of Uttarakhand. The study area in the 
UGRS lies between latitudes  78º00ʹ N-78º50ʹ N and 
longitudes  29º50ʹ-30º20ʹE, which extends from about 
10  km upstream of the Alaknanda River at Mulya and 
25  km upstream of the Bhagirathi river (at Koteshwar 
Dam) to up to Devprayag, where these two rivers join 
to become the Ganga river and further up to Haridwar 
city. Similarly, the area in the upper reaches of the Upper 
Yamuna River System (UYRS) lies between latitudes 
 77º50ʹN-78º10ʹN and longitudes  30º10ʹ-30º30ʹE, which 
extends from upstream of Yamuna River at Barkot till 
down to Dakpather, Vikas Nagar. The sample locations 
are given in (Fig.  1, Tables  1, and 2). The Upper Ganga 
River system (UGRS) comprises two glacier-fed riv-
ers, namely the Bhagirathi River basin (catchment area: 
7.8 × 103  km2) and the Alaknanda River basin (catchment 
area: 11.8 × 103   km2) [14, 105]. Bhagirathi River origi-
nates from the Gangotri glacier at an elevation of 3900 
m a.m.s.l. [107] joins with the Alaknanda River, which 
has its source from Satopanth and Bhagirath Kharak 
glacier system, at an elevation of 3641 m a.m.s.l. [95]. 
At Devprayag, from where they flow as the mighty river 
Ganga.

The Yamuna River originates from Saptrishi Kund near 
Bander Punchh peak (latitude 31.01°N, longitude 78.46°E) 
in the Mussoorie range of the lower Himalaya [60]. The 
Yamuna and its major tributaries (the Tons, the Giri, the 
Aglar, the Bata, and the Asan) form the Himalaya Yamuna 
River System (YRS). The YRS is fed mainly by the Indian 
summer monsoon and has its maximum discharge dur-
ing July–September, the monsoon season. Its catchment 
receives about 80% of its annual rainfall during these 
months [21]. Further, the Yamuna and the Tons receive 
water from glacier melt, a major contributor to the dis-
charge from April to June during the study period. The 
Yamuna joins the Ganga at Allahabad in the plains.
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Fig. 1 A Inset image of India, pictorial diagram. B and C showing the studied catchments and the sample locations in the Upper Ganga River 
System and Upper Yamuna River System
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Table 1 Geographical distribution of the samples (Upper Ganga River System)

S. No. Period of 
lockdown

Date Sample
ID

Sample
name

Description Latitude
(N)

Longitude
(E)

Elevation
(m asl)

Upper Ganga river 
system

1 May, 2020 (Lock-
down (Phase-1)

04/05/2020 AS-1 Alaknanda Upstream 10 km 
from Devprayag, Near 
baba Ramdev Grukul

30º 12′ 20ʺ 78º 38′ 41ʺ 475

2 04/05/2020 BS-1 Bhagirathi Upstream 25 km 
from Devprayag 
at Jakholi (Koteswar 
Mahadev)

30º 14′ 55ʺ 78º 31′ 36ʺ 600

3 04/05/2020 BS-2 Bhagirathi before the confluence 
of the Alaknanda 
and Bhagirathi rivers 
at devprayag

30º 09′ 07ʺ 78º 35′ 58ʺ 456

4 04/05/2020 AS-2 Alaknanda before the confluence 
of the Alaknanda 
and Bhagirathi rivers 
at devprayag

30º 08′ 40ʺ 78º 36′ 03ʺ 443

5 04/05/2020 G-1 Ganga after the confluence 
of Alaknanda and Bha-
girathi at Ramkund, 
Devprayag

30º 08′ 22ʺ 78º 35′ 49ʺ 490

6 05/05/2020 G-2 Ganga At Kodiyala 30º 04′ 23ʺ 78º 30′ 05ʺ 409

7 05/05/2020 G-3 Ganga at 1 km upstream 
from Shivpuri

30º 08′ 19ʺ 78º 23′ 57ʺ 371

8 05/05/2020 G-4 Ganga upstream of Virbhadra 
barrage

3º0 04 27ʺ 78º 17′ 26ʺ 329

9 05/05/2020 G-5 Ganga at VIP Ghat, Har ki Pauri, 
in front of Bhimgoda 
Barrage

29º 57′ 27ʺ 78º 10′ 39ʺ 272

10 05/05/2020 G-6 Ganga at Gajiwala 10 km 
downstream of Harid-
war

29º 53′ 06ʺ 78º 10′ 27ʺ 249

1 June, 2020 (Lock-
down (Phase-2)

12/06/2020 AS-1 Alaknanda Upstream 10 km 
from Devprayag, Near 
baba Ramdev Grukul

30º 12′ 20ʺ 78º 38′ 41ʺ 475

2 12/06/2020 BS-1 Bhagirathi Upstream 25 km 
from Devprayag 
at Jakholi (Koteswar 
Mahadev)

30º 14′ 55ʺ 78º 31′ 36ʺ 600

3 12/06/2020 BS-2 Bhagirathi before the confluence 
of the Alaknanda 
and Bhagirathi rivers 
at devprayag

30º 09′ 07ʺ 78º 35′ 58ʺ 456

4 12/06/2020 AS-2 Alaknanda before the confluence 
of Alaknanda and Bha-
girathi at devprayag

30º 08′ 40ʺ 78º 36′ 03ʺ 443

5 12/06/2020 G-1 Ganga after the confluence 
of the Alaknanda 
and Bhagirathi 
rivers at Ramkund, 
Devprayag

30º 08′ 22ʺ 78º 35′ 49ʺ 490

6 11/06/2020 G-2 Ganga At Kodiyala 30º 04′ 23ʺ 78º 30′ 05ʺ 409

7 11/06/2020 G-3 Ganga 01 km upstream 
from Shivpuri

30º 08′ 19ʺ 78º 23′ 57ʺ 371

8 11/06/2020 G-4 Ganga upstream of Virbhadra 
barrage

30º 04′ 27ʺ 78º 17′ 26ʺ 329

9 11/06/2020 G-5 Ganga at VIP Ghat, Har ki Pauri, 
in front of Bhimgoda 
Barrage

29º 57′ 27ʺ 78º 10′ 39ʺ 272

10 11/06/2020 G-6 Ganga at Gajiwala 10km 
downstream of Harid-
war

29º 53′ 06ʺ 78º 10′ 27ʺ 249
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Geological setup
The Upper Ganga Rivers system and its tributaries flow 
mainly through the Higher Himalayan crystalline (HHC) 
and Lesser Himalayan sedimentary (LHS) lithology. 
However, some of their tributaries originate in the Teth-
yan sediments. HHC in the study area consists of high-
grade gneisses, metabasite, quartzite, schist, and granite, 
with a trace amount of carbonate and calc-silicate rocks 
[81, 123]. After originating from the HHC, the Bhagirathi 
River drains through a deep gorge at Gangotri, crosses 
the Bhagirathi leucogranite, and travels to the village of 
Bhatwari where it crosses the Vaikrita Thrust at Gang-
nani [106]. According to [101], the Vaikrita Thrust marks 
the upper boundary of the Main Central Thrust (MCT), 
which is also defined as a zone of high ductile strain 
bounded by an upper thrust, MCT-II (Vaikrita Thrust) 
and a lower thrust, MCT-I (Munsiari Thrust).

Alaknanda River originates about 13  km upstream 
from the temple at Badrinath in the HHC rocks in the 
footwall of the South Tibetan Detachment (STD) Fault. 
After originating from the glacier, the river drains 

through a narrow and deep gorge of high-grade HHC 
rocks—grading from garnet-biotite-muscovite-schists 
from the base of the MCT to sillimanite-kyanite schists, 
psammitic gneiss, migmatites, and pervasive pegmatite 
veins and dykes of Malari leucogranite to the base of the 
STD Fault [47]. It crosses the MCT (8 km thick) near Hel-
ang, a small village about 12 km downstream from Joshi-
math, and suddenly, the gradient of the river decreases 
as it enters the carbonate formations of LHS rocks. The 
Yamuna originates near the Bandar Poonch peak in the 
Higher Himalaya, where it flows predominantly to the 
Higher Himalayan Crystallines of the Almora and the 
Ramgarh groups, having granodioritic to quartz-dioritic 
composition [33, 117]. The presence of calc-schists and 
marble with sulphide mineralization has been reported 
in the upstream area of Hanuman Chatti [21]. In the 
downstream, the river drains in the southwest direc-
tion, flowing through various litho-units in the outer and 
inner belts of the Lesser Himalayan [117]. The Tons River 
is the major tributary of the Yamuna in the Himalaya, 
which drains the western part of the Yamuna catchment. 

Table 2 Geographical distribution of the samples (Upper Yamuna River System)

S. No. Period of lockdown Date Sample
ID

Description Latitude
(N)

Longitude
(E)

Elevation
(m asl)

Upper Yamuna river 
system

1 May, 2020 (Lockdown 
Phase-1)

05/05/2020 YS-1 Yamuna River at Barkot 30º 32′ 16ʺ 78º 11′ 57ʺ 1153

2 05/05/2020 YS-2 The Yamuna at 20 km 
upstream of Damta 
village

30º 45′ 09ʺ 78º 05′ 35ʺ 1099

3 05/05/2020 YS-3 Yamuna 5 km Upstream 
of Juddo Village

30º 31′ 17ʺ 77º 57′ 14ʺ 848

4 04/05/2020 TS-1 Tons river at Menas 
Village

30º 45′ 38ʺ 77º 42′ 21ʺ 732

5 04/05/2020 TS-2 Tons river at Khadar 
before the confluence 
with Yamuna river

30º 48′ 54ʺ 77º 32′ 16ʺ 470

6 05/05/2020 YS-4 Yamuna river at Dakpa-
thar after the confluence 
with Tons

30º 30′ 39" 77º 49′ 41ʺ 370

1 June, 2020 (Lockdown 
Phase-2)

13/06/2020 YS-1 At Badkot 30º 32′ 16ʺ 78º 11′ 57ʺ 1153

2 14/06/2020 YS-2 At Naogaon 30º 47′ 10ʺ 78º 08′ 00ʺ 1120

3 14/06/2020 YS-3 20 km upstream 
of Damta village

30º 45′ 09ʺ 78º 05′ 35ʺ 1099

4 14/06/2020 YS-4 5 km upstream of Juddo 
village

30º 31′ 17ʺ 77º 57′ 14ʺ 848

5 13/06/2020 TS-1 Tons river at Menas 
Village

30º 45′ 38ʺ 77º 42′ 21ʺ 732

6 13/06/2020 TS-2 Tons at Khadar, 
before the confluence 
with the Yamuna river

30º 48′ 54ʺ 77º 32′ 16ʺ 470

7 13/06/2020 YS-5 Yamuna River Kalsi 
before the confluence 
with Tons River

30º 30′ 42ʺ 77º 49′ 54" 475

8 14/06/2020 YS-6 At Dak Patthar aft. Con-
fluence with Tons River

30º 30′ 39ʺ 77º 49′ 41" 370
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It originates in the glacier beyond Har-ki-dun and drains 
through crystallines and sedimentaries in its upstream 
and carbonates in the downstream reaches before joining 
the Yamuna at Kalsi, near Dehradun [21].

Climatic condition
The study area, Alaknanda, Bhagirathi, Yamuna, and 
Tons rivers (headwater) are situated in the Himalayan 
region of Uttarakhand State. The Alaknanda and Bhagi-
rathi rivers confluence at Devprayag, where the Ganga 
river adopts its formal name. The Alaknanda and Bhagi-
rathi river basins occupy an area of about 19.6 ×  103  km2 
up to Rishikesh, where the Ganga River enters the plain 
[17]. The Upper Ganga and Yamuna rivers and tributar-
ies mainly depend on glacier melt and precipitation. The 
climate of the study area varies from alpine to subtropi-
cal. Precipitation is generally received through monsoon 
rainfall from June to September, and maximum snowfall 
occurs in December, January, and February. The average 
annual rainfall in the UGRS and UYRS varies between 
1000 and 2500 mm [104]. The amount of rainfall is higher 
in the upper reaches than in the plains for both the val-
leys [99]. The annual temperature varies from 0 to 30 °C 
for the UGRS and UYRS [99].

Methodology
The total water samples (n = 34) were collected from 
the entire stretches of the UGRS and UYRS (Bhagirathi, 
Alaknanda, Ganga, Yamuna, and Tons) from the higher 
Himalaya up to the foothills (Fig. 1, Tables 1, and 2) fol-
lowed by earlier set international protocols [21, 23, 111, 
113] during the COVID-19 lockdown (May and June 
2020). The sampling was done from the flowing river 
water near the bank of the river using a mug or bucket. 
After rinsing it twice with the sample water, the bottles 
(High-Density Polyethylene (HDPE) were filled to the top 
to avoid any headspace. After that, the bottle mouth was 
sealed with teflon tape. The samples were filtered onsite 
with a 0.22 µm nylon membrane filter in the field (Mil-
lipore®). and stored in bottles for analysis at 4–5 °C. The 
samples were transported to the Wadia Institute of Him-
alayan Geology (WIHG) for laboratory measurements 
and stored in bottles for analysis at 4–5 °C. Field photo-
graphs of some of the sample collection sites from the 
study area are given in (Fig. 2).

The in-situ measurement of physical parameters, namely 
pH, TDS (mg/l), and EC (μS/cm), were carried out as per 
the method described by [21, 111, 113] using multi-param-
eter electrodes and probes  (Hach®) with an average preci-
sion of ± 0.01 for EC and TDS, ± 0.05 for pH (Table S1 and 
S2 in the supplementary material). Bicarbonate  (HCO3

−) 
was analyzed on pH based auto-titrator  (Metrohm®).

The major ions  (Cl−,  F−,  SO4
2−,  NO3

−,  Na+,  K+,  Mg2+, 
 Ca2+) were measured using Ion Chromatography (Dionex 
series ICS-5000). Primary standards (Dionex, seven 
anion standard-II, product no. 057590, and six cation-II 
standard product no. 046070) traceable to the National 
Institute of Standard Technology (NIST) were measured 
for calibration of ICS-5000 before the sample analysis 
followed the standard protocols [111–113]. Normal-
ized Ions Charge Balance (NICB) is presented in Tables 
S1 and S2 (supplementary material). The data quality is 
checked by NICB within 5% [22, 111]. The trace elements 
and dissolved silica concentration were measured in una-
cidified filtered water samples using a Quadrupole Induc-
tively Coupled Plasma Mass Spectrometer (ICP-MS). In 
water samples, measurement reproducibility was bet-
ter than (± 5%) for trace elements dissolved in silica and 
major ions.

Stable isotopes of oxygen and hydrogen (δ18O and 
δD) were measured in the Laser Water Isotope Ana-
lyzer (LWIA, Picarro L2140-i wavelength-scanned cav-
ity ring-down spectroscopy from Picarro Inc., CA, USA). 
An aliquot of an unacidified filtered water sample (a 0.22 
micron-nylon membrane filter,  Millipore®) was filled in 2 
ml glass vials and sealed with rubber caps. The vials with 
the sample were placed in a tray of a PAL auto-sampler 
connected to the Picarro L2140-ί. The (2 µl) samples were 
injected six times into the vaporization module of the 
analyzer by an auto-sampler at  110○C before being sent 
into the laser cavity with ultra-pure nitrogen (99.999%) 
as the carrier gas. The primary standards of (GISP and 
VSMOW-2) provided by the Atomic Energy Agency 
(IAEA) were analyzed for the calibration of (LWIA). The 
reproducibility of measurements was 0.09‰ for δ18O and 
0.5 ‰ for δD.

The Principal component analysis (PCA) is performed 
in the data sets for data transforming where the structure 
and the matrix of the data are often exposed once the 
boundaries of the PCA technique and detection of the 
scores-scores illustrations. PCA is a technique of Even 
though a statistical approach will process a collection of 
figures, whether analytically expressive or not, follow-
ing this procedure, the new axes, termed principal com-
ponents (PCs: F1, F2, F3, etc., using the scree plot), are 
selected based on a linear model Eq. (1).

where  Fjk = PC value is j for object k (the score for object 
j on component k),  aj1 = the loading of element one on 
component j,  xk1 = the length of the score for a variable 
one on item k, and n is the entire amount of variables 
observed.

(1)Fjk = aj1k2 + · · · + ajnkn
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The benefit of this technique is that the variance in the 
data set is mainly confined to the first few PCs, causing 
a reduction in the size of the multivariate matrix [126]. 
The physicochemical parameters (e.g., pH, EC, TDS, 
 HCO3

−,  Na+,  K+,  Mg2+,  Ca2+,  F−,  Cl−,  NO3
−,  SO4

2−) were 

taken to evaluate the water pollution index (WPI) values 
of water samples based on recommended or standard 
permissible limits as suggested by the Bureau of Indian 
Standards [12, 119]. WPI is an integrated, weightage-free, 
and conventional indexing method that converts all input 

Fig. 2 Field photographs of some sample collection sites from the study area. A, B Bhagirathi River at Jakholi (BS-1). C Sample collected 
in High-density Poly Ethylene (HDPE) bottle. D Alaknanda at Devprayag (AS-2). E Ganga at Har Ki Pauri, Haridwar (G-5)
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parameters into a one-value index to assess water quality 
[9, 42]. To compare the present results with earlier stud-
ies [16, 97], these parameters of the same basin were ana-
lyzed to estimate their WPI values. In addition, the WPI 
value of snow and ice from the Dokriani glacier was used 
to compare the results of different sources and assess the 
accuracy of this method. First, the pollution load  (PLi) of 
the ith parameters was calculated by adopting the follow-
ing equation [42]:

where Ci = observed concentration of  ith parameter, 
Si = standard permissible limit of the  ith parameters. In 
the case of pH, the following equations were used to cal-
culate the  PLi:

here, the  Sia value is suggested to be the minimum accept-
able pH value, i.e., 6.5.

where the  Sib value would be the maximum acceptable 
pH value, i.e., 8.5

Finally, the WPI was calculated using the following 
equation, as suggested by [42]:

The relative WPI values were used to scale the water 
quality. The lower WPI value represents improved water 
quality, and the reverse is for relatively low water quality.

Results
Geochemical characteristics
A detailed description of the geographical distribution 
and altitude (m asl) of the collected samples is given in 
Tables  1 and 2. The major ions, trace elements concen-
trations, and isotopic compositions of samples are pre-
sented in Tables S1 and S2. The UGRS samples were 
slightly alkaline, with a pH between 7.6 and 8.2, whereas 
samples from the UYRS were more alkaline, with pH var-
ying from 7.5 to 8.6 during the lockdown Phases 1 and 2. 
Correlation analysis also supported these results (Tables 
S5 and S6). The TDS concentration ranged from 47 to 
63 mg/L. The dominance order of major ions from the 
UGRS and UYRS during the lockdown Phases 1 and 2 are 
as follows: UGRS (Alaknanda, Bhagirathi, and Ganga up 

(2)PLi = 1+
(Ci − Si)

Si

(3)PLi =
Ci − 7

Sia − 7
; if pH < 7

(4)PLi =
Ci − 7

Sib − 7
; If pH > 7

(5)WPI =
1

n

n∑

i=1

PLi

to Haridwar)-  HCO3 (45%) > Ca (28%) >  SO4 (10.8%) > Mg 
(9.19%) > Na (3.67%) > K (1.66%) > Cl (0.96%) >  NO3 
(0.43%) > F (0.17%), and UYRS (Yamuna, Tons up to Dak-
pathar, Vikas Nagar)-  HCO3 (54.1%) > Ca (22.1%) > Mg 
(8.3%) >  SO4 (6.5%) > Na (5.0%) > Cl (1.7%) > K 
(1.5%) >  NO3 (0.45%) > F (0.11%). The major ions data 
were plotted in a Piper diagram (Fig. 3), in which the cati-
ons and anions were shown in the bottom left and right 
triangles, respectively, and further presented in the cen-
tral diamond to demonstrate the geochemical facies [86]. 
Most of the samples in the cation triangle were high-
lighted in the left corner, where  Ca2+ concentrations were 
higher (28% for UGRS and 22.2% for UYRS, respectively). 
In contrast, major anions samples on the right side of the 
triangle showed elevated concentrations of  HCO3 (45% 
in the UGRS and 54% in the UYRS, respectively). The 
geochemical facies of both the UGRS and UYRS were 
characterized by Ca (25%)-Mg (9%)-HCO3 (49%) type. 
The  NO3

− concentration was varied in the UGRS, with 
a maximum in Alaknanda (~ 23 μM) followed by Bhagi-
rathi rivers (~ 20 on average). This concentration is lesser 
in the UYRS found near Kalsi before its confluence with 
the Tons River.

The concentrations of measured trace elements (in 
ppb), namely barium (Ba), strontium (Sr), lithium (Li), 
lead (Pb), nickel (Ni), molybdenum (Mo), copper (Cu), 
and cobalt (Co) are presented in Table  S1 and S2. The 
present study observed no health hazard-causing element 
exceeding their permissible upper limit [12, 119]. In addi-
tion, the lowest concentrations of trace elements were 
observed in the UGRS and UYRS during the lockdown.

Gibbs plot and mixing models
Gibbs plot characterizes the controlling mechanisms in 
the riverine system, which explain the three end-mem-
bers, i.e., precipitation, rock weathering, and role of 
evaporation from bottom to top based on the rations of 
 [Na+/(Na+ +  Ca2+) and  Cl−/(Cl− + HCO 3)] (Fig.  4) [36]. 
The samples with low TDS and a high ratio of  [Na+/
(Na+ +  Ca2+) and  Cl−/(CI− +  HCO3

−] reflect the influence 
of precipitation. Samples with a medium concentration of 
TDS along with  Na+/(Na+ +  Ca2+) and  Cl−/(Cl− +  HCO3) 
ratios of < 0.5 showed the dominance of rock weathering 
that is presented on the middle left side of the plot. The 
concentration of TDS ≥ 300  mg/L and the ratio of  Na+/
(Na+ +  Ca2+ or  Cl−/(Cl− +  HCO3) up to 1.0 implied evap-
oration or evapo-crystallization as a dominant source 
of ions. The mixing model prepared using the current 
data set (Fig.  5) revealed that different groups of major 
ions could result in different rock weathering rather than 
other sources.
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Assessment of water pollution index (WPI)
The WPI index based on the standard permissible lim-
its in surface water is recommended by WHO [119] and 
BIS [12]. In surface waters, we categorized the WPI into 
four types to infer the water quality as follows: excel-
lent (WPI < 0.5), good (0.5 < WPI < 0.75), moderate 
(0.75 < WPI < 1), and highly polluted (WPI > 1). The WPI 
of water samples collected during the lockdown from 
the UGRS and UYRS considerably varied from 0.10 to 
0.61. The WPI in the studied riverine systems was lower 
than that reported in a previous study by Chakrapani 
[16]. Before the confluence with the Yamuna, the Tons 
River at Khadar had the highest WPI value (0.28–0.32). 
In contrast, the WPI values for other major river basins 
(Alaknanda, Bhagirathi, and Ganga) were nearly the same 
(average ~ 0.14) (Table 3). Notably, the WPI values were 
the lowest for the snow (~ 0.002) and ice (~ 0.04) of the 
Dokriani glacier, indicating the freshwater resources 

feeding the UGRS and UYRS. Furthermore, the change 
in the percentage of water quality between 2005 and the 
lockdown period in 2020 was maximum for the Ganga 
River (Table 3).

4.4. Stable isotopes (δ18O and δD) systematic
The UGRS and UYRS are mainly fed annually by fresh 
snow/glacier-melt waters [22, 49, 58, 67, 92, 118] (Fig. 1). 
We analyzed stable hydrogen (δD) and oxygen (δ18O) 
isotope ratios of studied riverine systems during the 
COVID-19 pandemic lockdown Phase 1 and 2. The δD 
and δ18O data are presented in Tables S1 and S2, whereas 
the slope, intercept, and deuterium excess data are shown 
in Table 4.

Samples from the UGRS had δD values ranging from 
− 76.16 to − 59.53 with an average of − 65.91 ± 0.1 and 
δ18O values from −  10.16 to −  8.55 with an average of 
−  9.40 ± 0.02; whereas, samples from the UYRS had δD 

Fig. 3 Piper diagram showing the hydrochemical facies of the Upper Ganga and Yamuna River system
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values varying from − 59.16 to − 43.15 with an average 
of − 52.9 ± 0.1 and δ180 values from − 8.76 to − 6.20 with 
an average of − 7.65 ± 0.02 during the lockdown Phase 1 
and 2.

The correlation plot between δD and δ18O isotope 
ratios is shown in Fig. 6. The statistical summary, includ-
ing slope, intercept, p-value, and  r2 of the stable isotope 
data, along with previously published data, is given in 

Fig. 4 Gibbs plot showing the Ratios of a  (Na+/(Na+  +  Ca2+) and b  (Cl−/(Cl− +  HCO3
−) as a function of TDS in the Upper Ganga and Yamuna river 

system

Fig. 5 a Mixing diagram of [Ca/Na Vs. HCO3/Na (background data is taken from [71], b mixing chart of Ca/Na Vs. Mg/Na (background data obtained 
from Gaillardet et al. [31]
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Table 4. The Global Meteoric Water Line (GMWL) [96] 
and Indian Summer Monsoon Line (ISML) [118] are also 
plotted for comparison with their best-fit lines (Fig. 6 and 
Table 4).

Isotopic values in the UGRS were nearly close 
(slope:7.45 ± 0.23, intercept: −  8.15 ± 2.0) to the obser-
vations reported by Ramesh and Sarin [92]. Each tribu-
tary/stream of the UGRS and UYRS reflects a distinct 
isotopic signal due to changes in elevations in its catch-
ment [49]. The samples collected during the lockdown 

Phase 1 and 2 displayed the maximum contribution of 
meltwater in the UGRS and UYRS.

The Deuterium excess (d-excess) has been practiced 
for a long time as one of the diagnostic tools to estimate 
the contribution of water vapor from different sources 
for a particular location on the globe [48, 67, 84, 118]. 
d-excess is described by an equation, d = δD-8* δ18O 
[24], which indicates the deviation in a set of data 
points from a line with slope 8 in δD vs. δ18O through 
a simple regression equation (Table 4). The UGRS and 

Table 3 Changes in water quality of the Alaknanda, Bhagirathi, Ganga, and Tons during the Pre-lockdown and lockdown phase

’n’ indicates the number of water samples collected in the different river basins.

The Water Pollution Index (WPI) value is shown for the snow and ice of the Dokriani Glacier to check the method’s accuracy

Sample location Pre-lockdown
WPI

During 
lockdown 
(Phase- 1 
and 2)
WPI

% change 
in WPI

Remarks/relative water quality

Ramesh and 
Sarin [92]
n = 11

Chakrapani [16] n = 33 Tiwari et al., 
[112]n = 2

The present 
study (n = 34)

Alaknanda 0.10 0.19 – 0.15 21 Improved

Bhagirathi 0.12 0.19 – 0.13 32 Improved

Ganga 0.13 2.0 – 0.14 93 Improved

Tons – – – 0.18 – Moderately improved

Dokriani glacier 0.03 freshwater

Table 4 Slope, Intercept, and deuterium excess calculated based on stable isotopes of oxygen (δ18Ovsmow) and hydrogen (δD vsmow) of 
the upper Ganga and Yamuna River systems and other riverine systems of northwest Himalaya, India

Sites name No. of sample Slope Intercept P value r2 (deuterium excess) References

Range Mean

Glowal Meteoric Water Line 
(GMWL)

IAEA network, Worldwide 8.2 10.4 0.001 1 6.1–9.4 8.0 ± 1.9 [96]

Indian Summer Monsoon (ISM) 
(summer season)

Garhwal region, Northwest 
Himalaya

7.5 ± 1.5 14.0 ± 0.02 0.001 1 14.9–20.4 18.4 ± 1.1 [118]

Upper Ganga River System (lock-
down Phase-1, May 2020)

10 8.70 ± 0.73 15.49 ± 6.59 0.004 0.95 8.46–10.32 9.23 ± 0.63 This study

Upper Ganga River System (lock-
down Phase-2, June 2020)

10 6.98 ± 0.39 − 7.8 ± 3.9 0.008 0.97 8.05–10.26 9.32 ± 0.74 This study

Upper Yamuna River System 
(Lockdown Phase -1, May 2020)

06 5.65 ± 0.74 − 8.7 ± 5.35 0.001 0.94 5.98–10.55 8.07 ± 1.82 This study

Upper Yamuna River System 
(Lockdown Phase -2, June 2020)

08 5.81 ± 0.59 − 7.60 ± 4.74 0.002 0.94 8.23–10.94 9.93 ± 0.95 This study

Dokriani Glacier melt, Garhwal 
Himalaya (Summer)

23 6.50 ± 1.5 0.03 ± 0.01 0.001 0.94 2.7–21.5 14.6 ± 3.9 [118]

b Yamuna River System (postmon-
soon)

14 7.71 ± 0.27 7.1 ± 2.3  < 0.002 0.98 5.3–12.8 9.6 ± 2.2 [21]

bYamuna River System (Summer) 28 5.61 ± 0.26 − 9.5 ± 2.1  < 0.002 0.92 5.2–17.3 9.9 ± 3.1 [21]
bYamuna River System (Winter) 31 6.34 ± 0.24 − 1.8 ± 2.1  < 0.002 0.98 7.7–16.2 12.7 ± 2.0 [21]
cUpper Ganga River System 
(Summer)

23 7.45 ± 0.23 − 8.0 ± 2.0  < 0.002 0.98 6.2–21.0 13.7 ± 3.1 [92]
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UYRS had a d-excess ranging from 6.1 to 9.4 with a 
mean of 8.0 ± 1.9.

Multivariate metrics
To validate the geochemical analysis, we performed a 
multivariate analysis that included the PCA in the river-
ine waters. The PCA is generally calculated in the surface 
water to evaluate the interrelationship within the avail-
able geochemical data set and simplify the complex data 
[62]. The PCA values of water samples from the UGRS 
and UYRS, including the Tons river basin, during lock-
down Phase 1 and 2 (May and June 2020) are shown in 
Table  5. From scree plots, the inflection point (eigen-
value > 1) for the UGRS starts at the principal compo-
nent (PC) sequence number four. In contrast, it occurs 
at the PC sequence number two for the UYRS (Fig.  7). 
Any factor with an Eigenvalue > 1 is considered more 
significant [63]. However, to maintain the differences in 
inflection points between the UGRS and UYRS, we have 
extracted three PCs (F1, F2, and F3: Eigenvalues > 1), 
which are more significant as compared to others and 
can be utilized to assess the dominant hydro-geochem-
ical processes and their variability (Table  5). Cumula-
tive variance in the UGRS was almost the same in May 
and June but varied substantially in the UYRS during the 
same months. A higher eigenvalue indicates higher PC 

variability, which is evident in the UYRS from May to 
June. Factor loadings measure the closeness between the 
input variables and the PC. The first three PCs (F1, F2, 
F3) account for 83.06% in UGRS, 90.28% in the UYRS of 
the total variance during May, and 80.80% in the UGRS, 
and 95.56 in the UYRS of the total variance during June.

In the UGRS (May), the concentrations of pH,  F−, and 
 NO3

− showed negative loadings for the first principal 
component (F1), while concentrations of all other varia-
bles had positive factor loadings, with higher loadings for 
EC, TDS,  Mg2+, and  Ca2+. A higher value of EC is attrib-
uted to a strong linkage with major cations like  Ca2+, 
 Na+, and  Mg2+ [9]. For the second principal component 
(F2), the concentration of many variables such as pH, EC, 
TDS,  HCO3− and  Ca2+ had negative loadings, whereas 
 Cl−,  SO4

2+,  Na+, and  K+ showed high positive loadings, 
contributing more to the water sample. In the third prin-
cipal component (F3), no higher positive loadings (> 0.8) 
were found.

In the UGRS (June), the scenario of factor loadings of 
PCs was quite different compared to May. For F1, the 
concentration of  Na+ (~ 0.89) had high positive loadings. 
The concentration of all physical variables and  HCO3

− 
had negative loadings. Other remaining variables had 
lower (< 0.5) or moderate positive loadings (0.5 > F1 > 0.8) 
(Table  5). This indicates that the water quality of the 

Fig. 6 XY-Plot of stable Isotopic (δDvsmow Vs. δ18Ovsmow) systematics of Upper Ganga River and Upper Yamuna River System



Page 14 of 22Tiwari et al. Geochemical Transactions            (2024) 25:8 

riverine system may be attributed to less anthropogenic 
and industrial waste input in the river basin during the 
COVID-19 lockdown. For F2, no variables had high posi-
tive loadings (> 0.8), while the concentration of some 
physio-chemical variables such as temperature, TDS, EC, 
 Mg2+, and  SO4

2− showed moderate positive loadings. The 
pH, F-, and  NO3

− concentrations were characterized by 
negative loadings for F2. The PC (F3) is not significant 
for assessing concentrations of variables due to low and 
moderate loadings, except  HCO3

−.
In the UYRS (May), the first three principal compo-

nents together account for 90.28% and 95.55% of the total 
variance of the data set. The concentration of variables 
such as pH,  F−, and  NO3

− had negative loadings similar 
to the UGRS (May) load for F1. The  HCO3

−,  K+,  Mg2+, 
and  Ca2+ showed high positive loadings, whereas the 
concentrations of  SO4

2−,  Cl−,  F−, and TDS had moder-
ate positive loadings. For F2, no variables showed high 
positive loadings. However, most of the physio-chemical 
variables indicated moderate positive loadings. For F3, 
concentrations of  Na+ had high positive loadings.

Discussion
Geochemical source identification and implications 
against water quality improvement
The COVID-19 pandemic enforced partial and total 
lockdowns worldwide and provided an unprecedented 
opportunity to test how lockdown has improved the 

water quality by reducing the contamination in the 
water resources. The rock-water interactions resulted 
in the dissolved ionic compositions in the riverine sys-
tem. Furthermore, the major ions are added from many 
sources like solid/liquid precipitation, dust/aerosol, and 
anthropogenic activities. The congruent and incongru-
ent dissolutions of rock weathering dominate the water 
composition [16, 57]. In contrast to the pre-lockdown 
period, we observed increased pH (~ 8 on average) in the 
post-lockdown, showing a general improvement in the 
water quality of UGRS and UYRS during the lockdown. 
Relative increases in pH, i.e., a more alkaline nature of 
the riverine water in a specific time, may result from 
reduced anthropogenic activities [28, 129]. The water 
quality of water bodies, including the Ganga, Yamuna, 
Mandakini, Alaknanda, Bhagirathi, and Gaula, and the 
Naini and Bhimtal lakes, were examined based on physi-
cal parameters such as pH, TDS, Hardness, etc. [74] dur-
ing Covid-19 lockdown and observed that all improved 
due to decreased human activity (tourist, religious activi-
ties, rafting, and other sports), as well as a decrease in the 
flow of industrial effluents. The TDS exhibits the lowest 
concentrations during the lockdown and is equivalent to 
the glacier melt [112], which suggests the dominance of 
major cations from natural weathering sources [28]. Sim-
ilar variation was observed for EC in both river systems. 
The correlation matrix showed a strong positive rela-
tion between EC and TDS at a 0.05 level of significance 

Table 5 Loadings of experimental variables on principal components analysis (PCA) for the Upper Ganga River System (UGRS) and 
Upper Yamuna River System (UYRS) in May and June 2020

Factor loadings

Variables UGRS (May) UGRS (June) UYRS (May) UYRS (June)

Name of the variable F1 F2 F3 F1 F2 F3 F1 F2 F3 F1 F2 F3

pH − 0.257 − 0.230 0.737 − 0.867 − 0.141 0.041 − 0.126 0.491 0.589 0.781 0.321 0.322

Ec (μs/cm) 0.975 − 0.150 0.093 − 0.610 0.649 − 0.275 0.562 0.775 0.254 0.988 − 0.102 0.014

TDS (mg/L) 0.975 − 0.150 0.093 − 0.610 0.649 − 0.275 0.562 0.775 0.254 0.988 − 0.102 0.014

Temp (°C) 0.700 0.115 0.292 − 0.073 0.694 − 0.245 0.433 0.775 − 0.456 0.786 0.102 0.572

HCO3 (μM) 0.684 − 0.095 − 0.080 − 0.198 0.103 0.809 0.953 − 0.136 0.264 0.971 − 0.072 − 0.166

F (μM) − 0.722 0.253 0.493 0.343 − 0.691 0.062 − 0.696 0.215 0.287 − 0.791 − 0.223 0.432

Cl (μM) 0.234 0.953 − 0.052 0.784 0.481 − 0.202 0.709 − 0.517 − 0.179 − 0.021 0.983 − 0.137

NO3 (μM) − 0.036 0.293 0.765 0.569 − 0.554 0.117 − 0.097 0.700 − 0.685 − 0.479 0.859 0.096

SO4 (μM) 0.269 0.945 0.077 0.707 0.682 − 0.061 0.664 − 0.363 − 0.584 0.985 − 0.075 0.061

Na (μM) 0.197 0.962 − 0.063 0.899 0.412 0.012 0.235 − 0.243 0.932 0.907 0.370 − 0.090

K (μM) 0.061 0.879 − 0.125 0.606 0.280 0.592 0.914 − 0.183 − 0.206 0.965 − 0.164 − 0.123

Mg (μM) 0.971 0.000 0.142 0.034 0.776 0.559 0.970 0.074 0.216 0.990 0.013 0.010

Ca (μM) 0.896 − 0.345 0.129 − 0.796 0.167 0.546 0.986 − 0.039 0.146 0.985 0.080 − 0.052

Eigenvalue 5.365 3.888 1.545 4.904 3.711 1.890 5.983 3.097 2.657 9.650 2.070 0.703

Variability (%) 41.267 29.906 11.888 37.723 28.542 14.538 46.026 23.821 20.435 74.232 15.920 5.406

Cumulative % 41.267 71.173 83.061 37.723 66.265 80.803 46.026 69.847 90.282 74.232 90.152 95.558
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(Table  S4 and S5 in the supplementary material). EC is 
directly proportional to the TDS content in the water 
[15]. No study examined the water quality based on geo-
chemical and isotopic chemistry during the COVID-19 
lockdown in this study area. However, based on the phys-
ical and other parameters such as dissolved oxygen (DO), 
biochemical oxygen demand (BOD), total coliforms (TC), 
and pH, the Central Pollution Control Board of India and 
the Indian Institute of Technology Roorkee suggested 
that the water quality of the Ganga and Yamuna River has 
improved by 40–50% [20]. Khan et al. [53] also reported 
improved water quality during the COVID-19 lock-
down, and industrial wastewater runoff was significantly 
stopped. A similar study was carried out by Chakraborty 
et  al. [15] in the Damodar River during the COVID-19 
lockdown and pre-lockdown phases and found that water 
samples were substantially contaminated during pre-
lockdown. As a result of the halting of the heavy metal 
industries over three months, 90.90% of water samples 

were upgraded to good quality, whereas 9.10 percent of 
samples were moderately polluted.

HCO3
− was the principal constituent compared to the 

other ions in both river systems. The sources of various 
dissolved elements in the riverine system [57] are given 
in Table S3. Chemical constituents (major and trace ele-
ments) in the riverine systems have various sources, 
including sea salts with chemical, physical, and biologi-
cal processes carried by atmospheric circulation, which 
are finally deposited through solid and liquid precipita-
tion. These components undergo different rock weath-
ering, evaporation, and anthropogenic activities [16, 21, 
82, 125]. Geochemical facies have described the domi-
nance of calcium, influenced by local sources [51, 102], 
and  HCO3

− dominated as a major anion, followed by the 
 SO4

2− and  Cl−.  SO4
2− and  Cl− had lower concentrations 

in both riverine systems, indicating a negligible contri-
bution from the anthropogenic sources [122]. The con-
centration of  Na+ and  K+ is reduced during lockdown, 

Fig. 7 Scree plots of principal components showing Eigenvalues and cumulative (%) for a Upper Ganga River Basin in May; b Upper Ganga River 
Basin in June; c Upper Yamuna River Basin in May; d Upper Yamuna River Basin in June
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particularly in the UGRS, compared to the UYRS. How-
ever, their concentration is greater than the limiting 
value in some places, as described by [12]. These major 
ions showed the presence of urban wastewater, which is 
increased during lockdown phases near populated areas. 
 Cl− and  NO3

− enrichments are attributed to anthropo-
genic activity caused by agricultural waste, rural land 
uses, and substantial population growth [1, 94].

Six sub-categories are available in the diamond-shaped 
piper diagram [66]. A detailed description of major ions 
chemistry of riverine systems along with surface and 
its controlling factors was described by Gibbs [36]. Few 
samples from the UYRS fall in the evaporation category, 
representing the effect of local environmental conditions 
[87]. In contrast, samples from the UGRS fall in the rock-
weathering dominant category (Fig. 4).

The mixing model (Fig.  5) describes the rock-water 
interaction as silicate weathering that produces mainly 
sodium, potassium, calcium, magnesium, silica, and 
bicarbonate in the riverine system. Whereas carbonate 
weathering produces calcium, magnesium, and bicar-
bonate, and the dissolution of evaporates, chloride, and 
nitrate [16, 21, 22, 31, 40, 51, 71, 125]. The traces of 
 SO4

2−,  Cl−, and  Na+ could also be found in the riverine 
water, obtained from the dissolution of halite, pyrite, gyp-
sum, and anhydrite [83, 87]. Data collected during the 
lockdown period from the UGRS and UYRS displayed 
the dominance of silicate weathering with little influence 
of carbonate weathering.

The WPI exhibits that the water quality started to be 
contaminated from the beginning of the twentieth cen-
tury and continued to increase until recent years due to 
anthropogenic activities, including untreated industrial 
effluents and urban sewage near the river basins. The 
WPI values of water samples collected by Sarin et  al. 
[97] are comparable to those of the lockdown phase for 
the Bhagirathi and the Ganga rivers (Table  3), suggest-
ing that these river systems rejuvenated the water qual-
ity to its initial stage, i.e., around 1990. The water of 
Alaknanda could not be recycled because the WPI value 
for Alaknanda River was still higher (during lockdown 
2020) than that of the water sample taken around 1990. 
COVID-19 lockdown provides clear information on 
environmental deterioration triggered by several anthro-
pogenic actions in the past two decades. The lockdown 
Phases 1 and 2 has significantly reduced pollution due 
to the temporary closing of the industries and other 
pollution-deriving agents. However, industrial activities 
are essential for public livelihood, so the local govern-
ing bodies should practice several awareness programs to 
improve river water quality and the environment.

The isotopic values of both the basins fall on the Global 
Meteoric water line (GMWL) and the Glacial meltwater 

line of the Garhwal, northwest Himalaya [118]. However, 
in this study, the samples collected during the pre-mon-
soon season showed their trend away from the Indian 
Summer Monsoon Line (ISML) (Fig. 6), which may result 
from the westerlies’ influence. The stable isotopes of 
δ18O and δD were depleted in the UGRS, showing that 
isotopic ratios of δ18O and δD in the basin are more gla-
cierized compared to enriched values of isotopic ratios 
of δ18O and δD in the UYRS. The Yamuna River (slope: 
5.73 ± 0.59 and intercept: − 8.15 ± 4) originates from the 
Yamunotri Glacier near Bandarpunch Peak [90], which is 
smaller than the Gangotri Glacier. The Bhagirathi River 
emerges from the second-largest glacier in India, and the 
Alakananda River contributes to this, which originates 
from the Satopanth glacier. Hence, the contribution of 
glacial melt/ fresh snow in the UYRS is also far less than 
that of the UGRS.

In May and June 2020, we noticed a lower d-excess in 
the UGRS and UYRS, less comparable to prior research 
in the same region [21, 92] (Table 4). The observed low 
d-excess indicated the maximum contribution of glacial 
melt/fresh snowmelt in the UGRS and UYRS riverine 
water during the sample collection time.

Statistical substantiation to water quality inferences
In the PCA, the positive loading displays the increased 
contribution of the variables with the increasing load in 
the dimensions, while negative loadings show less con-
tribution of the parameters [63]. In our study, the first 
principal component had the negative factor loading for 
an anthropogenic element like  NO3 during the lockdown, 
suggesting its less contribution to UGRS and UYRS river 
waters [65]. At the same time, positive factor loadings of 
some cations like  HCO3

−,  Ca2+, and  Mg2+ reflect their 
strong association with the sources of origin. Positive 
loadings of the  Na+ indicated that the ionic enrichment 
factor was dominant due to urban waste [65].

The PC loadings (F1 and F2) relating to the source and 
water quality are presented in Fig. 8 using the bi-plot for 
both the UGRS and UYRS during the lockdown. The size 
of the loadings on the individual PC(s) is represented by 
a vector drawn from the basis of a set of loadings coor-
dinates, which characterize the sources from which they 
were derived or related [3, 55]. In the UGRS (May), clus-
ter-1 containing six parameters (temperature, EC, TDS, 
 HCO3

−,  Ca2+, and  Mg2+) lies at the rightmost position 
of the bi-plot (Fig.  8). Their position inferred that they 
contributed maximum variance and were strongly associ-
ated with F1, i.e., their response in the river water sample 
was strong for May. In the UGRS (June sampling), their 
relative position from F1 was shifted mostly along with 
F2, resulting in their relatively weak contribution to the 
water sample.
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The  HCO3
− position is near the origin of the bi-plot, 

showing the most negligible contribution in the water 
sample in May. However, chemically, they are consistent 
with the typical components of rock minerals. The  NO3

−, 
which can be derived from organic matter and oxidation 
of ammonia, largely deviated from cluster 1. Hence, the 
geological processes consistent with cluster-1 are likely 
through rock weathering [78, 124]. The UGRS (June) had 
less variance for F1, contributing weakly to the river basin. 
A similar contribution was found for  Fe2+ in June. Cluster-2 
containing  Na+,  Cl−,  SO4

2−, and  K+ are characterized by 
positive scores on both F1 and F2. Since two sets of loading 
vectors (i.e., cluster-1 and 2) are almost 90°, they are uncor-
related from their source of origin. They provide a substan-
tial contribution with F2 in May, which is reduced in June 
because they are shifted in the middle portion of F1 and 
F2. Cluster-3 is not well-defined in the bi-plot. pH shifted 

significantly from the origin in June, showing a significant 
variance along with F1 compared to the UGRS (May). In 
the UGRS (June), these clusters no longer remain the same, 
and their pattern is still somewhat unclear, as it is still hard 
to separate any trends within each group.

In the UYRS (May), cluster-1 containing  Mg2+,  Ca2+, 
 K+,  HCO3-,  SO4

2−, and  Cl− had positive scores for both 
F1 and F2. These parameters are strongly associated and 
positively correlated with their source of origin. They had 
positive loadings, indicating increased contribution to 
the river water in June. Cluster-2 containing pH,  NO3

−, 
TDS, EC, and temperature showed a relatively low cor-
relation with F1, and their clustering is not compact 
(Fig. 8). In the UYRS (June), the concentration of all vari-
ables was inconsistent because their factor scores for F1 
and F2 were substantially changed. Only one well-defined 
cluster with positive scores on F1 and F2 could be found. 

Fig. 8 Bi-plots of PCs 1 and 2 for pattern identification between physicochemical parameters for a Upper Ganga River System in May; b Upper 
Ganga River System in June; c Upper Yamuna River System in May; d Upper Yamuna River System in June 2020
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The  NO3
− and  Fe2+ showed a different source of origin, 

similar to the UGRS (May). In the UYRS (June), factor 
loading for cluster-1 was almost the same (Fig. 8).

Results from the correlation matrix demonstrate that 
TDS strongly correlates with EC during the study period 
(Table  S4 and S5 in the supplementary material). Most 
cations  (K+,  Ca2+,  Mg2+) strongly correlated with  HCO3, 
exhibiting their origin from a similar source [59, 88]. In 
the UGRS,  Cl− showed a good correlation with  SO4

2−, 
 Na+, and  K+, while this relationship was no more sub-
stantial for UYRS in June. The  NO3 concentration in 
both riverine systems had no significant correlation with 
chemical constituents, reflecting the different sources 
of its origin. A similar correlation was found with  F− in 
both river systems. The strongest correlation among the 
chemical components of river waters was observed in 
UYRS during June (Table  S5). Analysis of the correla-
tion matrix is an effective method to describe the results 
obtained from chemical analysis [46, 63]. This analysis 
substantially supported our results derived from physio-
chemical analysis.

Overall, multivariate analysis suggests that the source 
of physio-chemical parameters, such as anthropogenic 
activity, may be substantially reduced in the river basin 
in June. These findings illustrate that improvements in 
water quality during lockdown phases reflect the remark-
able environmental impacts of anthropogenic activities. 
The present study offers a wake-up call to make develop-
ment pathways environment-friendly.

Conclusions
Our findings draw the following conclusions and 
recommendations:

• Samples from the UGRS are slightly alkaline, with a 
pH ranging from 7.6 to 8.2, whereas the UYRS sam-
ples are more alkaline, ranging from 7.5 to 8.6.

• The TDS concentration in the UGRS and UYRS was 
the lowest-ever equivalent to the glacier melt, indi-
cating a little mixing of effluent material from exter-
nal sources.

• Bicarbonate (HCO3-) is one of the significant ele-
ments in both the river basins, followed by other cati-
ons and anions, indicating that the geo-genic process 
was dominant during the lockdown.

• Data obtained during the lockdown period from the 
Upper Ganga and Yamuna basins clearly show the 
dominance of silicate weathering with little influence 
of carbonate weathering.

• The Lockdown phase has significantly reduced the 
pollution level in water due to the temporary closing 
of the industries and other pollution-causing agents. 

Further, we found negligible hazardous trace ele-
ments (As, Pb, Ni, etc.) in the UGRS and UYRS.

• PCA evinces the negative factor loading for an 
anthropogenic element during the lockdown, signify-
ing a reduction in the intake of pollution-causing ele-
ments to both UGRS and UYRS.

• The decreased isotope ratios of δ18O and δD suggest 
a more significant contribution from the glaciated 
areas in the basin.

• The stable isotopic values (δ18O and δD) are 
depleted at the headwaters of streams and tributaries 
and substantially enriched throughout the river basin 
at lower altitudes.

• The UGRS and UYRS were cleaner during the lock-
down than during previous cleaning campaigns, 
which had cost significant money but never yielded 
satisfactory results.

• This lockdown shows that we are responsible for pre-
serving nature’s purity via sustainable development 
and resource protection.
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