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Letter

The molecular proportionality between Cg and C; isomers reported recently (F. D. Mango, Geochim.
Cosmochim. Acta, 2000, 64, 1265; ref. 1) is probably the strongest evidence for catalysis yet published. It
implicates two cyclopropane-like precursors, [S¢] and [S;] (where S denotes any substrate), of similar structures,

each yielding three isomers along similar kinetic pathways:

[S¢] > n-hexane 4 2-methylpentane + 3-methylpentane

[S;]—n-hexane + 2-methylhexane 4 3-methylhexane

This view is supported here by the carbon isotope ratios of these isomers in 36 oils from Western Canada

(M. J. Whiticar and L. R. Snowdon, Org. Geochem., 1999, 30, 1127; ref. 2). They exhibit strong correlations in
5 13C, consistent with their being formed in triads through isotopically indistinguishable precursors. These
results add significantly to the growing body of evidence supporting catalysis.

Introduction

There can be little doubt that light hydrocarbons (C;—Cy) can
be produced thermally from decomposing hydrocarbons in
sedimentary rocks.®> Although other pathways have always
seemed possible (e.g., catalysis*®), they were rarely given
serious consideration until it became clear that (a) ordinary
hydrocarbons should remain stable under the time-tempera-
ture conditions typically seen in sedimentary rocks,® and (b)
thermal cracking in the laboratory does not produce a gas
resembling natural gas.®!%!'® Catalysis gained additional
recognition in 1987 when an invariance in isoheptanes was
disclosed.!” That work introduced steady-state kinetics as a
critical, if not necessary, element to light hydrocarbons (LH)
genesis, thereby undermining thermal cracking as the sole
explanation.

Catalysis by acidic clay minerals and reduced transition
metals®! were offered as alternative sources of LHs. However,
only the latter has reproduced the composition of natural gas in
the laboratory.??> > LHs exhibit a striking molecular propor-
tionality consistent with a catalytic origin through cyclopro-
pane-like intermediates,’ a mechanism independently
supported elsewhere.’®*” An isotopic analysis of these same
hydrocarbons is reported here. The data used are from
Whiticar and Snowdon®? who reported the molecular and
isotopic compositions for 26 LHs in 42 oils and condensates
from Western Canada.
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Results and discussion

Assume that hexane and heptane isomers originate as
suggested by Mango! and illustrated in Fig. 1.

If the kinetic pathways [S¢] — [#-Cg + 2-MP + 3-MP] and [S/]
— [n-C; + 2-MH + 3-MH] are energetically similar, as would
be the case in Fig.1 for example, then the following
proportionality obtains:

[(n-C6)(MHs)]/[(MPs)(n-Cy)] =« (D

DOI: 10.1039/b0057641

(where MHs = 2-methylhexane + 3-methylhexane; MPs = 2-
methylpentane + 3-methylpentane).

The LH in crude oils obey eqn. (1) to a remarkable degree.
Fig. 2 shows the correlation between [(n-C¢)(MHs)] and
[(MPs)(n-C5)] in concentrations of wt.% total oil (+* = 0.99;
ref. 1). a is tightly constrained to a mean of 0.75 with a standard
deviation (s) of 0.20 (mean centered), significantly below those
of the ratios composing o: s = 0.42 for (n-C¢/n-C5), 0.46 for (n-
Ce¢/MPs), 0.51 for (n-C¢/MHs), and 0.41 for (MPs/MHs).
Moreover, the variability of o is unique to its particular
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Fig.1 A kinetic scheme for -catalytic isomerization through a
cyclopropane-reduced metal oxide intermediate: [Sq] (n = 1), and [S/]
(n=2); Fig. 1 of Mango." [S]is a cyclopropyl-transition metal complex
formed from some substrate S. The actual structure of [S] is unspecified
and should not be inferred from the figure (see Mango™ for discussion).
Cyclopropanes may or may not exist as distinct entities. However, their
inclusion as distinct entities coordinated to a catalytic site best
illustrates the hypothetical process where three isomers are kinetically
linked to a common intermediate.
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Fig. 2 A plot of [(n-C)*(MHs)]"? vs. [(MPs)*(n-C5)]*? for 900 crude
oils; Fig. 2 in Mango (ref. 1). MHs = (2-MH + 3-MH); MPs = (2-MP +
3-MP). Concentrations are in wt.% total oil. The data are plotted as
square root to constrain the scale to average concentrations. The line is
the linear regression line: intercept = —-0.068; slope = 1.01; ? =0.991.
Mean for the ratio [(n-Ce)*(MHs))/[(MPs)*(n-C;)] = 0.75 + 0.31s.
Mean-centered s = 0.20.

combination of product functions. Its s of 0.20 increases by a
factor of four in [(MPs)(MHs)]/[(n-Ce)(n-C;)] and by a factor of
almost five in [(n-C7)(MHSs))/[(n-Cs)(MPs)] (ref. 1). Thus, at all
concentrations, [(n-Cg)(MHs)] and [(MPs)(n-C;)] express a

strong and significant correlation in crude oils, perhaps the
strongest yet disclosed among LHs, while « remains nearly
constant.

This relationship establishes a genetic link between [#-Cg + 2-
MP + 3-MP] and [#-C; + 2-MH + 3-MH] pointing to
structurally similar precursors. It would be reinforced if it could
also be shown that the six LH reflect isotopically similar
precursors. Although & 13C for [S¢] and [S;] cannot be measured
directly, they can be calculated from the weighted sums:

d13C([Sg)) = ad3C(2-MP) + b5'*C(3-MP)

+¢8"C(n-Cg) )
013 C([S7])) = do6"C(2-MP) + 5> C(3-MP)
+/613C(n-Cg) (3)

(where a, b and ¢ (d, e, and f) are the molecular fractions of the
respective isomers; « + b+ ¢ =1,and d + e + f=1). Thus, 0
13C’s for [S¢] and [S7] can be calculated from the & '*C’s and
molecular fractions of the six isomers.

Whiticar and Snowdon? published this data for the LH in 42
oils from Western Canada. Table 1 was constructed from their
data. It contains 36 of their oils, including all with sufficient
data to calculate & '*C ([Se]) and 6 '*C ([S;]) except for two,
possibly altered oils. Fig. 3 shows [S¢] to be isotopically
indistinguishable from [S;]. The mean for & '*C ([S¢])/6 *C
([S7]) = 1.00 + 0.024s, which is within the experimental error
reported for this data (+0.5s).

Table 1 Light hydrocarbon data taken from Whiticar and Snowdon.? § '*C values are averages of multiple analyses. d '*C [C6] and 6 *C [C7] (the
last two columns) were calculated from eqn. (2) and eqn. (3), respectively with coefficients a, b and ¢ calculated from the respective Cg4 concentrations
normalized to 1 and coefficients d, e, and f calculated from the respective C; concentrations normalized to 1. The amount of 2-MP (in %) was taken
from column five of Whiticar—Snowdon’s Table 3 labeled 3DMC4 incorrectly. Six oils in Whiticar—-Snowdon’s set of 42 oils were excluded from this
set: Brazeau PA was excluded because of possible thermochemical sulfate reduction (TSR), Fusilier was not included because of low n-alkanes and
thus possible biodegradation. Four other oils were excluded because they did not contain the full suite of data required to calculate § '*C [C6] and &

13C [C7): Brazeau River F, Chester, Foothills 8, and Manyberries

OJMP 3MP nC6 d8BC oBC sBCn 2MH 3MH nC7 o8BC sBC sBC  sBC s 13¢C
%) (%) (%) 2MP 3MP  Cé6 %) (%) (%) 2MH 3MH nC7 [C6] [CT]
Blueberry 548 389 413 -283 -2745 -28.1 8.09 7.08 342 2665 -279 -289  -27.9939 -27.5400
Bonanza 6.27 456 494 -29.03 -294 -30 3.3 567 286 289 2947 -30.8  -29.4408 -29.6325
Brazeau C 449 329 326 -279 257 297 253 416 23 266 268 -30.5 277759 -27.6903
Brazeau D 1.67 128 349 -268 -25 -29 325 43 10.09 —262  -26.8 -29.9 -27.6345 -28.4626
Brazeau M 472 328 244 246 2425 -26.5 552 458 145 242 253 272 249341 -25.0128
Brazeau Y 239 175 379 -218 219 237 692 556 11.16 -21.6 -23.5 248 227301 -23.5575
Cecil 558 4.8 2.86 -286 -27.6 294 395 635 226 265 279 -29.5 -28.4501 -27.7476
Cherhill 634 498 391 275 263 -28.8 393 722 346 256 2655 -29.1 274414 -26.8984
C. del Bonita 878 595 641 -272 -267 284 991 549 172 263 272 -29 274231 -26.8599
Dunvegan 29 188 634 -251 -248 26 402 401 1291 -24 261 267 255624 -26.0668
Foothills 12 37 237 7157 251 238 254 621 506 1262 242 259 265 -25.0406 -25.7751
Glenevis 889 6.06 5.8 -27.5 -2685 -28.1 544 636 253 2555 272 285 274797 -26.8031
Home 34 3.64 233 695 -253 -253 259 6.1 484 1138 -249 263 27 -25.6228 —26.2743
Hutch 6.12 559 178 267 -259 -27.1 409 716 121 239 256 274 264213 -25.2168
Loon 34 282 175 274 -256 293 251 433 149 253 2625 -29.5 -27.1803 —26.5451
Lousana 462 422 195 -287 263 -30.1 1.6 364 1.03 262 271 -30.7 -28.0144 -27.4617
Medicine River 5.14  3.58 42 2555 2495 -257 504 571 341 242 2615 -26.55 -254325 -25.5523
Miracle 1 6.05 373 954 -26 252 264 644 503 9.01 247 261 27 -26.0431 -26.0557
Moose Mtm 492 393 642 -2455 -2385 -2585 9.64 634 674 2385 -239 259 249164 -24.4721
Moose Mtm 2 3.77 289 824 247 -23 253 7.17 471 1338 232 -23.6 -258 247021 -24.6518
Otter 422 298 67 278 261 -29.7 197 466 965 -26 267 -29.9 -28.3514 -28.5121
Plato 526 411 288 -259 -255 269 419 549 111 239 258 274  -26.0009 -25.2268
Provost 521 3.68 361 -259 26 -26 492 55 259 244 262 -269 -259583 -25.6586
Rainbow 1 549 409 85 2555 -24 2775 515 7.1 1413 239 242 -289 262337 -26.6589
Rainbow 2 385 33 636 269 252 293 505 748 1411 243 247 284 276146 -26.5839
Redwater 355 28 478 275 -258 -29 3.11 468 805 256 264 -299 277165 -28.0217
Rycroft 415 283 7.1 2705 -2601 -29.15 378 492 11.89 -27.25 -289  -30.95 -27.8999 -29.7809
S. Eureka 491 323 748 -265 26 27.15 548 481 922 2485 -265 2795 -26.7079 -26.7218
Sage Creek 0.64 056 097 -2515 -2525 -249 556 477 8.8 232 -25.55 -25.55 -25.0641 -24.8670
Sylvan Lake 6 421 403 -259 -258 258 213 529 219 2425 -253  -25.55 -25.8421 -25.1242
Turner Valley  0.78 0.66 126 -233 -228 2405 488 578 7.3 227 241 254  -23.5278 -24.2626
Virginia Hills 471 3.51 7.86 -249 243  -269 827 644 7.9 2455 -2535 -28.1 257466 -25.9508
Wainwright 6.19 419 319 -257 -256 26 576 678 1.69 238 258 265 257396 -25.0736
Wallesden Gr.  5.05 3.83 437 -265 -258 277 462 5.7 291 247 263 279  -26.6934 —26.0932
Wembley 544 338 671 -297 -285 304 493 604 614 281 289 -30.8 -29.7413 -29.3513
Zama 471 306 7.66 -259 253 28 519 674 1543 234 248 -28.8  -26.8235 -26.7903
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Fig. 3 A plot of carbon isotope ratios (%o) for presumed intermediates
[Sel and [S], where & BC([Se)) = a0 13C (2-MP) + b 5 *C 3-MP) + ¢ §

3C (n-Cg) and 6 *C ([S7]) = d 6 *C (2-MH) + ¢ 6 *C (3-MH) + /6 1*C
(n-C5). Data shown in Table 2. The reported analytical error for 6 °C’s
is 4+0.5%os (ref. 2). The mean for & '*C ([S¢])/ 6 *C ([S7]) = 1.00 +
0.02s. For the linear regression, > = 0.83, slope = 0.90 and intercept = —
2.48.

Fig. 2 (ref. 1) provides molecular evidence for structurally
similar precursors, like the hypothetical intermediates [S¢] and
[S;] in Fig. 1. Fig.3 is consistent with this, implicating
isotopically indistinguishable precursors. Whiticar and Snow-
don? came to a similar conclusion: "these isotopic distributions
among isomers are strong evidence suggesting that the
formation of these gasoline-range hydrocarbons is intricately
linked to the isotopic signature of the precursor molecules from
which they are derived".

Fig. 3 does not exclude the conventional view that LH are
thermal descendents of higher isoprenoids and n-alkanes (ref.
28). But it is difficult to explain the two correlations (Fig. 2 and
3) by this mechanism. They suggest a catalytic agent guiding
the course of reaction through structurally similar intermedi-
ates. Irrespective of how these six LH might originate
(catalytically or thermally), however, their molecular and
isotopic correlations establish a genetic link (<) between n-
alkanes and isoalkanes that traverses carbon number and is
fundamental to the origin of LH:

[1-Cg <> 2-MP <> 3-MP] & [n-C; <> 2-MH < 3-MH]
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