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We have identified important chemical reactions that control the fate of metal-contaminated estuarine

sediments if they are left undisturbed (in situ) or if they are dredged. We combined information on the

molecular bonding of metals in solids from X-ray absorption spectroscopy (XAS) with thermodynamic and

kinetic driving forces obtained from dissolved metal concentrations to deduce the dominant reactions under

reduced and oxidized conditions. We evaluated the in situ geochemistry of metals (cadmium, chromium, iron,

lead, manganese and zinc) as a function of sediment depth (to 100 cm) from a 60 year record of contamination

at the Alameda Naval Air Station, California. Results from XAS and thermodynamic modeling of porewaters

show that cadmium and most of the zinc form stable sulfide phases, and that lead and chromium are associated

with stable carbonate, phosphate, phyllosilicate, or oxide minerals. Therefore, there is minimal risk associated

with the release of these trace metals from the deeper sediments contaminated prior to the Clean Water Act

(1975) as long as reducing conditions are maintained. Increased concentrations of dissolved metals with depth

were indicative of the formation of metal HS2 complexes. The sediments also contain zinc, chromium, and

manganese associated with detrital iron-rich phyllosilicates and/or oxides. These phases are recalcitrant at

near-neutral pH and do not undergo reductive dissolution within the 60 year depositional history of sediments

at this site.

The fate of these metals during dredging was evaluated by comparing in situ geochemistry with that of

sediments oxidized by seawater in laboratory experiments. Cadmium and zinc pose the greatest hazard from

dredging because their sulfides were highly reactive in seawater. However, their dissolved concentrations under

oxic conditions were limited eventually by sorption to or co-precipitation with an iron (oxy)hydroxide. About

50% of the reacted CdS and 80% of the reacted ZnS were bonded to an oxide-substrate at the end of the

90-day oxidation experiment. Lead and chromium pose a minimal hazard from dredging because they are

bonded to relatively insoluble carbonate, phosphate, phyllosilicate, or oxide minerals that are stable in

seawater. These results point out the specific chemical behavior of individual metals in estuarine sediments, and

the need for direct confirmation of metal speciation in order to constrain predictive models that realistically

assess the fate of metals in urban harbors and coastal sediments.

1. Introduction

A recent evaluation of sediment contamination of surface
waters in the United States by the US Environmental Protec-
tion Agency identified 96 watersheds, mostly urban harbors,
containing metal and/or organic chemical contents that are
potentially hazardous to aquatic biota.1 These harbors and
coastal sediments are contaminated from past and present
industrial and military waste disposal practices. One such
example is the estuary sediments of the East Outfall Site of the
Seaplane Lagoon, at the former Naval Air Station (NAS)
Alameda located on an island in San Francisco Bay, USA
(Fig. 1). The most abundant metals in the sediments are
cadmium, lead, chromium, zinc, copper, and nickel. Concen-
trations of these metal contaminants above background levels
in San Francisco Bay result from a 57 year history of military
and industrial activity at this site. From 1940 to 1975, the
Seaplane Lagoon received about 300 million gallons of waste-
water from industrial and storm sewers from NAS Alameda.
The Seaplane Lagoon and its surrounding area have been
designated as a mixed-use commercial marina site in the City

of Alameda land use plan.2 A concern for this site and other
urban estuarine environments is the contamination of the
overlying water column as metals dissolve when reduced sedi-
ments react with oxygen-rich water during bioturbation, storm,
dredging and other marina activities.
Recent studies of metal contamination in the San Francisco

Bay identified previously contaminated sediments as a major
source for some metals in the water column. Rivera-Duarte
and Flegal calculated the total benthic fluxes of lead,3 silver,4

cadmium, cobalt, copper, nickel, and zinc5 using measured
porewater concentrations and a flux equation that combines
Fickian diffusion and an irrigation flux from bioturbation
and mixing of the top sediments. They found that the relative
benthic to fluvial inputs to the San Francisco Bay were metal
specific. Lead inputs from the sediments were 30 to 930 times
fluvial inputs. Silver release from the sediments near waste-
water treatment outflows contributed about 2.5 times the input
of the fluvial system for the entire San Francisco Bay. Benthic
and fluvial inputs were similar for zinc, but nickel, cadmium,
and copper showed small or negative fluxes from the sediments
to the overlying waters. This approach is a useful metric to
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compare metal contamination sources in large watersheds, but
it does not explicitly account for the geochemical reactions that
control the porewater concentrations.
Important chemical controls on the flux of trace metals to

the water column are the oxidation and reduction of sulfur and
iron in surfacial estuarine sediments, as indicated by in situ
measurement of trace metal fluxes across the sediment – water
boundary in Gullmarsfjorden.6,7 In these studies, high fluxes of
cadmium, copper, and zinc from the sediments to the overlying
water in the oxygen-enhanced portion of the experiment were
reversed when the overlying water went anoxic and trace metals
were transferred to the sediments. However, the iron flux
showed the opposite trend with a negative flux to the sediments
during oxidation and positive flux to the water column as they
became anoxic. The negative correlation between these trace
metals and iron and the reported lack of correlation with
carbonate flux suggests that cadmium, copper, and zinc are
present in the sediments as sulfides which can be easily
dissolved by oxygen-rich waters. The increase in dissolved iron
as the sediments become anoxic represents the reductive
dissolution of iron hydroxides that formed during the
oxidation experiment. In situ measurements of this kind
provide valuable insight into trace metal geochemistry, but
final interpretation of the data lack confirmation of the
reactions in the solid phases in the sediment.
Much of our knowledge of the solid chemical form of trace

metals in reduced estuarine sediments has been derived
indirectly from water analyses and from chemical extractions.
Although there is ambiguity among studies, trace metal uptake
in the sediments is often linked to iron sulfides such as pyrite
(FeS2) and monosulfides (amorphous FeS or mackinawite).
For example, Kornicker and Morse8 reported cadmium,
manganese, and nickel sorption to pyrite in solution-based
experiments. In estuarine sediments, copper and manganese
have been identified as pyrite co-precipitates because they
dissolved in the pyrite extraction. In contrast, cadmium,
chromium, lead, and zinc are believed to be sequestered by
other sulfides or oxides because a significant amount of these
metals dissolved with less aggressive, non-pyrite extractions.9

Similarly trace metal sorption or co-precipitation with
amorphous FeS or mackinawite have been observed.10,11 An
improved method to the use of chemical extractions is to
determine trace metal bonding in sediments using synchrotron
radiation X-ray absorption spectroscopy (XAS). This method

is a unique molecular probe for complex materials because
it is element specific, has relatively high sensitivity, does not
require a vacuum, and is non-destructive. Thus, spectra for a
number of elements can be directly measured on a bulk,
untreated sediment samples with porewater present.
In this paper, we have examined the chemical processes that

impact the fate of metal contaminated estuarine sediments
if they are left undisturbed (in situ) or if they are dredged. We
discuss the in situ geochemistry of metals (cadmium, chro-
mium, copper, lead, manganese nickel, and zinc) with variation
of depth in contaminated estuarine sediments from one site
in the Seaplane Lagoon. We also discuss the geochemical
processes responsible for the transfer of these metals from
reduced contaminated estuarine sediments to oxygen-rich
seawater by comparing in situ geochemistry with that of the
oxidized sediments. To do this, we combine bulk sediment
and porewater analyses, flow-through oxidation experiments,
geochemical modeling, and X-ray absorption spectroscopy.
Combination of the geochemical and spectroscopic data yields
a more robust picture of the reactions that control the fate
of trace metal contaminates in urban harbors and coastal
sediments.

2. Methods

2.1. Sample collection and analysis

Between July 1997 and November 1998, a series of sediment
cores were collected from the East Outfall Site, Seaplane
Lagoon (Fig. 1). For the geochemical and spectroscopic results
given here, we focus on 0.5 m Plexiglas push cores that were
collected on July 10, 1997 and on November 10, 1997 within the
same general location (GH-CC-SC2, GH-CC-SC4, GH-CC-
SC7, and GH-CC-SC9; referred to here as SC2, SC4, SC7, and
SC9). Sediment cores were sectioned under argon and sub-
samples taken at 3 cm intervals from the center portion of
the core to ensure no oxidation. Sediment compositions are
reported for the push cores SC2 to SC4 and for deeper gravity
cores to 1 m (GH-CC-C1, GH-CC-C2 and GH-CC-C3;
referred to here as C1, C2, and C3). From core SC4, we
extracted porewater for sulfur, chloride, trace and major
element concentrations by centrifugation (5000 rpm for 60 min
in argon-filled centrifuge tubes) and filtration (using 0.22 mm
polycarbonate filters), and we measured wet sediment pH.
From core SC2, we extracted porewater by Reeburgh-type

Fig. 1 Location map of field study. Star indicates general location where the sediment cores were sampled.
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pneumatic core squeezers in a nitrogen glove box for total
phosphorus, sulfur and carbon concentrations. Synchrotron
X-ray absorption spectroscopy (XAS) data were collected from
frozen samples stored in N2 (SC2, SC4, C1, C3) and from fresh,
unfrozen sediments (SC7, SC9) within days of core recovery
maintaining the oxic water column. Based on comparisons
of fresh and frozen samples, freezing and thawing the sedi-
ments under controlled environments did not alter the metal
chemistry.

2.2. Sediment oxidation experiments

Three samples of reduced Seaplane Lagoon sediment from core
SC4 at 31.5 cm (SC4-11) were reacted with filtered, oxygen-rich
seawater for 92 days to determine the net metal dissolution and
changes in sediment metal coordination. The seawater (pH ~
7.9) was collected offshore from the Pacific Ocean by Long’s
Marine Laboratory, University of California, Santa Cruz.
The experiments were performed in well-mixed, flow-through
reactors at room temperature.12 Reaction vessels and sample
bottles were cleaned in a Class 100 clean room. Twenty samples
were collected during the experiment and sample pH was
measured immediately after the sample was collected. Samples
for trace element analysis were acidified with ultra-pure nitric
acid to prevent precipitation. Sample bottles were double
bagged and stored in a laminar flow hood until they were
analyzed in a Class 100 clean room. An identical control
experiment with seawater and no sediment was also run to
provide procedural blanks.

2.3. Water analyses

2.3.1. Trace metals. Seaplane Lagoon porewaters and
output solutions from the oxidation experiments were analyzed
for Al, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn using a Hewlett-
Packard HP4500 inductively coupled plasma-mass spectro-
meter (ICP-MS). An isotope dilution method was used to
measure the porewater Cd, Cr, Cu, Pb, Ni, and Zn
concentrations, by equilibrating the samples with a mixed
enriched isotope spike (111Cd, 52Cr, 65Cu, 206Pb, 61Ni, 67Zn) at
temperature for 48 h, and then concentrating the trace metals
from the equilibrated porewater by precipitating Mg(OH)2
from seawater at pH 10, which scavenges a number of trace
metals. The precipitate was then carefully washed with pH
10 ultra-pure ammonium hydroxide solution to remove sea
salts, and then dissolved in 2% ultra-pure nitric acid for trace
metal analyses13 Because Cd and Ni were not concentrated
on the Mg(OH)2 precipitate, the supernatant and washes
were combined and concentrated using a Cetac Corporation
DSX-100 system. Cd and Ni were run under normal plasma
conditions, Cr and Cu were run under cool plasma conditions
to reduce interference from ArC and ArMg, and Pb and Zn
were run under hot plasma conditions to enhance sensitivity at
high masses. For all isotope dilution determinations, the error
in the measured ratios was less than 10% and generally in the
range of 1–4%, and precision was 10–15% for Cr, Ni, Cd and
Pb; and 15–20% for Cu and Zn.
For the porewater Al, Mn, and Fe analyses, aliquots of the

saline porewater were diluted to 1 psu (practical salinity unit)
with ultra-pure 2% nitric acid and spiked with Sc and Y as
internal standards and run under normal plasma conditions.
Calibration curves were made in a seawater reference standard
(NASS-4) diluted to 1 psu to correct for matrix effects. Detec-
tion limits determined from the reproducibility of procedural
blanks were 1 ng g21 for Al, 0.1 ng g21 for Mn, and 100 ng g21

for Fe, and precision was generally less than 5–10%.
Filtered output samples from the oxidation experiments were

concentrated 5 to 10 times using a Cetac Corporation DSX-100
system, spiked with Sc, Y, In, Tb, and Bi internal standards to
correct for matrix effects and instrument drift, and run under

hot plasma conditions. Calibration curves were made in a
series of standards in 2% ultra-pure nitric acid. Reported
errors include both measurement and calibration uncertainties.
Detection limits were determined by processing ion-exchange
resin beads through the DSX-100 chemistry under the same
conditions as the output samples. No significant differences
were seen in different batches of resin. Accuracy was mea-
sured against metal concentrations in two seawater reference
standards, NASS-4 and CASS-3.

2.3.3. Major elements, sulfur, chloride, and carbon ana-
lyses. Total dissolved Al, Ca, Fe, K, Mg, Mn, Na, P, S, and
Si were analyzed by a Fisons Instruments (Model 3560)
inductively coupled plasma-atomic emission spectrometer
against multi-point calibration curves in distilled and deionized
water. The reproducibility of this technique was better than
2%. Sulfur speciation and concentrations were determined by
ion chromatography (Beckman 421A controller, a LDCMilton
Roy Conducto Monitor III conductivity detector, and a
Waters 4.6 6 150 mm IC-Pak Anion HC column) against
multi-point calibration curves. Samples were injected in a
helium-purged, 5 mM sodium phosphate solution. Detection
limit was 5 mg L21 for each sulfur species, and precision and
accuracy were better than 10%. Chloride concentrations were
determined using an ion-specific probe against a multi-point
NaCl calibration curve in distilled and deionized water. The
detection limit was 10 ng g21, and precision and accuracy were
better than 10%. Dissolved carbon analyses were made with an
infrared carbon analyzer (O. I. Analytical TOC 700). Total
inorganic carbon (TIC) and total organic carbon (TOC) were
measured in sequence by first acidifying the sample to pH v 4,
heating it to 100 uC, and trapping and detecting the evolved
CO2. The dissolved organic carbon in the sample was then
oxidized with sodium persulfate at 100 uC and the evolved CO2

was trapped and detected. Total carbon (TC) was measured
directly by combining the TIC and TOC methods into a single
step.

2.4. Bulk sediment chemistry and mineralogy

2.4.1. Sediment digestion. The chemical depth profiles were
determined for cores SC2-4 and C1-3 from sediment samples
digested with acid UA2 solutions (mixture of concentrated HF
and HCl from Unisolv, Inc.) in a microwave and neutralized
and stabilized with UNS2A/2B solutions (mixtures of H3BO3,
TETA and EDTA from Unisolv, Inc.). Reported Al, Ca, Cd,
Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, S, and Zn concentrations
were analyzed by inductively coupled plasma-atomic emission
spectrometry. Analysis protocol adheres to EPA SW-846
Method 6010A augmented to include all of the elements
listed above. A scandium spike was added to all samples to
correct for viscosity effects resulting from the high silica
content of these sediments and instrument drift. Detection
limits and analytical reproducibility are reported in the data.
The quartz content prevented recovery of silica concentrations
because silica did not stay in solution. The external standard
was the NIST Buffalo River sediment.

2.4.2. X-ray diffraction. Sediment mineralogy was deter-
mined by X-ray diffraction (XRD) on freeze dried and ground
sediment samples from cores SC2-4 and C1-3. Data were
collected from random orientation powder samples with a
Scintag PAD V instrument using a Cu-Ka source at 45 kV and
35 mA from 2 to 92u 2h in 0.02u steps. XRD cannot detect
amorphous solids or minerals that are present at v2 wt%. For
a few samples, XRD spectra were collected on air-dried and
ethylene glycol-saturated sediments to separate some of the
diagnostic clay peaks (e.g., smectite from chlorite). Reported
mineral abundance is estimated by assigning minimum XRD
detection limits to the trace mineral components (y2 wt%).
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2.5. XAS data collection and analysis

X-ray absorption spectroscopy (XAS), including X-ray absorp-
tion near-edge structure (XANES) and extended X-ray absorp-
tion fine structure (EXAFS) analyses, were used to characterize
the speciation and bonding of metals in sediments from cores.
Fluorescence spectra were collected at Stanford Synchrotron
Radiation Laboratory (SSRL) on wiggler beamlines 4-1 and
4-3 using either a 13-element Ge array detector, a 4-element
Ge array detector, or a Lytle detector. Either a Si(111) or
Si(220) monochromator crystal was used, depending on which
crystal produced the higher quality spectra for a given element,
and detuned 50–70% of maximum intensity to minimize higher-
order harmonic reflections. XANES spectra for chrominum
and manganese were collected with a Si(220) crystal to achieve
higher energy resolution. Spectra were collected at ambient
temperature with the sample in an helium atmosphere to
prevent oxidation of sensitive elements. For a given element,
energy was calibrated using a reference foil spectrum. Absorp-
tion spectra for crystalline reference compounds and fresh
precipitates for each element were collected and analyzed for
comparison to sediment spectra.
XANES spectra were used to identify oxidation states for

chrominum and manganese and to qualitatively identify sedi-
ment components. Background-subtracted XANES spectra
were normalized to maximum absorption and first-deriviative
spectra were fit with linear combination of reference spectra
using the program DATFIT (G. George, ref. 62). EXAFS
spectra were quantitatively analyzed using EXAFSPAK14 and
FEFF15 according to methods described in O’Day et al.16 and
Carroll et al.17 Debye–Waller factors (s2) were fixed on values
determined from fits to reference spectra of compounds of
similar structure and composition to sediment components.
For trace metals (Cd, Zn, Cr, Pb, and Mn), proportions of
sulfide and oxide components in the sediment spectra were
estimated based on the relative proportions of first-shell oxygen
and sulfur backscatterers. For these spectra, detection of a
unique bonding site is estimated at about 10–15 atom% of the
total element signal. For iron, the sulfide and oxide compo-
nents were quantitatively determined based on integrated areas
of least-squares fits. Fit areas were calibrated using spectra of
standard mixtures of pyrite (commercial), nontronite (The
Clay Minerals Society, Standard NAu-1), and illite (The Clay
Minerals Society, Standard IMt-1) in a ground quartz matrix at
5 atom% total iron to simulate sediment concentrations.
Spectra of the reference mixtures were collected in fluorescence
at room temperature at SSRL on beamlines 2-3 and 4-3. Based
on sensitivity tests with known concentrations, the proportion
of pyrite in these sediments can be determined to better than
¡5% of the total iron in the sample (see ref. 18).

2.6. Geochemical modeling of porewaters

The aqueous geochemistry was modeled thermodynamically
for sulfide, carbonate, oxide/hydroxide, and silicate saturation
and aqueous complexation versus depth with the Geochemist’s
Workbench geochemical code19 and SUPCRT92 database20

modified to include aqueous Cd-, Cr-, Fe-, Mn-, Ni-, Pb, and
Zn-sulfide species, and Zn-, Cd-, and Pb-carbonate and
hydroxide phases (Table 1). Activity coefficients were calcu-
lated from the extended Debye–Hückel method, which is valid
to ionic strengths of about 3 mol kg21. For these calculations,
we used field temperature, porewater trace and major element
concentrations with dissolved sulfur as HS2, and sediment
pH from core SC4. Alkalinity as HCO3

2 was calculated as a
function of depth for core SC4 from a linear regression of the
inorganic-carbon concentration measured in core SC2 data.
For the surface sediments at 1.5 cm, alkalinity is calculated
from measured pH and atmospheric CO2, because the linear

Table 1 Thermodynamic equilibria and constants used in the geo-
chemical modeling of the porewater chemistry in the Seaplane Lagoon
sediments

log K
(25 uC) Ref.

Al(OH)3(gibbsite) 1 3H1 A Al31 1 3H2O 7.76 38
AlOOH(boehmite) 1 3H1 A Al31 1 2H2O 7.56 38
CaCO3(calcite) A Ca21 1 CO3

22 28.48 39
CaMg(CO3)2(dolomite)A Ca21 1Mg21 1 2CO3

22 218.14 39
CaSO4?2H2O(gypsum)A Ca21 1 SO4

22 1 2H2O 24.48 40
Cd21 1 H2O A CdOH1 1 H1 210.08 41
Cd21 1 2H2O A Cd(OH)2

0 1 2H1 220.34 41
Cd21 1 3H2O A Cd(OH)3

21 1 3H1 233.29 41
Cd21 1 4H2O A Cd(OH)4

22 1 4H1 247.33 41
Cd21 1 Cl2 A CdCl1 1.97 42
Cd21 1 2Cl2 A CdCl2(aq) 2.59 42
Cd21 1 3Cl2 A CdCl3

2 2.34 42
Cd21 1 4Cl2 A CdCl4

22 21.46 42
Cd21 1 CO3

22A CdCO3
0 3.00 43

Cd21 1 2CO3
22 A Cd(CO3)2

22 6.40 43
Cd21 1 CO3

22 1 H1 A CdHCO3
1 11.83 43

Cd21 1 SO4
22 A CdSO4

0 20.003 44
CdHS1 A HS2 1 Cd21 29.02 45a

Cd(HS)2 A 2HS2 1 Cd21 216.53 45a

Cd(OH)2(beta) 1 2H1 A Cd21 1 2H2O 13.64 41
CdS 1 H1 A HS2 1 Cd21 215.91 44
CdSO4(anglesite) A Cd21 1 SO4

22 20.11 44
CdCO3(otavite) A Cd21 1 CO3

22 212.1 43
CdO(monteponite) 1 2H1 A Cd21 1 H2O 15.1 46
Cr31 1 Cl2 A CrCl21 7.60 47
Cr31 1 2Cl2 A CrCl2

2 7.91 47
CrHS21 A HS2 1 Cr31 29.88 45a

CrS 1 2H1 1 0.25O2(aq) A 0.5H2O 1
Cr31 1 HS2

31.35 47

Cr2O3(eskolaite) 1 6H1 A 3H2O 1 2Cr31 7.64 44
Cu21 1 Cl2 A CuCl1 0.40 42
Cu21 1 2Cl2 A CuCl2(aq) 20.69 42
Cu21 1 3Cl2 A CuCl3

2 22.29 42
Cu21 1 4Cl2 A CuCl4

22 24.94 42
CuS(covellite) 1 H1 A HS2 1 Cu21 222.83 39
CuFeS2(chalcopyrite) 1 2H1 A 2HS2 1
Fe21 1 Cu21

232.56 39

Cu2CO3(OH)2(malachite) 1 2H1 A 2H2O 1
CO3

22 1 2Cu21
24.40 39

CuO(tenorite) 1 2H1 A Cu21 1 H2O 7.66 39
FeHS1 A HS2 1 Fe21 25.52 48a

(Fe)2HS31 A HS2 1 2Fe21 210.02 48a

(Fe)3HS51 A HS2 1 3Fe21 215.30 48a

Fe21 1 Cl2 A FeCl1 20.16 42
Fe21 1 2Cl2 A FeCl2(aq) 28.17 42
Fe31 1 Cl2 A FeCl21 1.47 42
Fe31 1 2Cl2 A FeCl2

1 2.13 49
Fe31 1 4Cl2 A FeCl4

2 20.79 49
FeS2(pyrite) 1 H2O A Fe21 1 2HS22 1
0.5O2(aq)

259.23 39

FeS(pyrrhotite) 1 H1 A HS2 1 Fe21 23.72 39
FeCO3(siderite) A Fe21 1 CO3

22 210.52 39
FeOOH(goethite) 1 2H1 A Fe21 1
1.5H2O 1 0.25O2(aq)

27.96 40

Na0.33Fe2Al0.33Si3.67O10(OH)2(Na-nontronite) 1
5.32H1 A 2Fe21 1 0.33Al31 1 O.5O2(aq) 1
0.33Na1 1 3.67SiO2 1 3.66H2O

228.51 50

Mg5Al2Si3O10(OH)8 (7 Å chlorite) 1
16H1 A 2Al31 1
12H2O 1 3SiO2(aq) 1 5Mg21

70.61 39

Mn21 1 Cl2 A MnCl1 20.14 42
Mn21 1 3Cl2 A MnCl3

2 20.77 44
MnHS1 A HS2 1 Mn21 25.00 48a

(Mn)2HS31 A HS2 1 2Mn21 29.55 48a

(Mn)3HS51 A HS2 1 3Mn21 213.63 48a

MnS(alabandite) 1 H1 A HS2 1 Mn21 20.05 39
MnCO3(rhodochrosite) A Mn21 1 CO3

22 210.52 39
Ni(OH)2 1 2H1 A Ni21 1 2H2O 7.64 44
Ni21 1 Cl2 A NiCl1 21.00 42
NiCO3 A CO3

22 1 Ni21 –6.82 44
NiHS1 A HS2 1 Ni21 25.29 48a

(Ni)2HS31 A HS2 1 2Ni21 29.82 48a

(Ni)3HS51 A HS2 1 3Ni21 213.65 48a
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extrapolation yielded negative values. The solution was charge
balanced by adjusting the chloride concentration.

3. Results

3.1 Depth profiles of the porewater chemistry

We report the porewater trace and major element, chloride,
sulfur, and pH for core SC4 and the porewater total phos-
phorus, carbon, inorganic carbon, and organic carbon for core
SC2 in Fig. 2 and in Tables 2 and 3. There are distinct trends
in the porewater composition with depth in core SC4. Calcium,
magnesium, potassium, sodium, chloride, and sulfide concen-
trations increase with depth to 25.5 cm and remain constant
at greater depths. Aluminium concentrations are quite low and
constant (with the exception of one outlying data point). Silica
concentrations increase by about two times from surface
sediments to a depth of 4.5 cm, and remain constant at greater
depths. Iron concentrations were detected only at depths above
4.5 cm. Cadmium, chromium, and lead concentrations increase
with depth following similar trends observed for their sediment
concentrations. Nickel concentrations show a slight decrease
with depth. Copper, manganese, and zinc depth profiles are
more complicated. Manganese concentrations decrease to
minimum at a depth of 4.5 cm, then increase to a maximum

at a depth of 16.5 cm, and then decrease at greater depths.
Zinc and copper concentrations increase to maximum at a
depth of 22.5 cm, decrease between 22.5 and 28.5–31.5 cm, and

Fig. 2 Chemical composition of porewaters extracted from core SC4.
Dissolved carbon data is from core SC2. Both cores were collected on
July 10, 1997.

Table 1 Thermodynamic equilibria and constants used in the geo-
chemical modeling of the porewater chemistry in the Seaplane Lagoon
sediments (continued)

log K
(25 uC) Ref.

NiS2(vaesite) 1 H2O A Ni21 1 2HS2

1 0.5O2(aq)
–61.34 39

NiS(millerite) 1 H1 A HS2 1 Ni21 28.03 51
PbS(galena) 1 H1 A HS2 1 Pb21 214.85 44
Pb21 1 H2O A PbOH1 1 H1 27.7 52
Pb21 1 2H2O A Pb(OH)2 1 2H1 217.09 52
Pb21 1 3H2O A Pb(OH)3

2 1 3H1 228.09 52
Pb21 1 Cl2 A Pb Cl1 1.44 42
Pb21 1 2Cl2 A PbCl2(aq) 2.00 42
Pb21 1 3Cl2 A Pb Cl3

2 1.69 42
Pb21 1 4Cl2 A Pb Cl4

22 1.43 42
Pb21 1 CO3

22 A PbCO3 6.58 53
Pb21 1 2CO3

22 A Pb(CO3)
22 9.40 53

PbCO3(cerussite) A Pb21 1 CO3
22 213.54 20

Pb3(CO3)2(OH)2(hydrocerussite) 1 2H1

A 2CO3
22 1 3Pb21 1 2H2O

218.81 52

PbSO4(anglesite) A Pb21 1 SO4
22 27.85 39

PbHS1 A HS2 1 Pb21 28.62 45a

Pb(HS)2 A 2HS2 1 Pb21 216.43 45a

SiO2(quartz) A SiO2(aq) 24.0 39
SiO2(a-cristobalite) A SiO2(aq) 23.45 39
SiO2(am. si.) A SiO2(aq) 22.71 39
Zn21 1 H2O A ZnOH1 1 H1 28.96 54
Zn21 1 2H2O A Zn(OH)2

0 1 2H1 228.04 44
Zn21 1 3H2O A Zn(OH)3

2 1 3H1 228.83 44
Zn21 1 4H2O A Zn(OH)4

2 1 4H1 241.61 44
Zn21 1 Cl2 A ZnCl1 1.99 42
Zn21 1 2Cl2 A ZnCl2(aq) 2.51 42
Zn21 1 3Cl2 A ZnCl3

2 20.02 42
Zn21 1 CO3

22 1 H1 A ZnHCO3
1 8.91 54

Zn21 1 CO3
22 A ZnCO3

0 3.9 55
Zn21 1 SO4

22 A ZnSO4
0 20.026 44

Zn2S3
22 1 3H1 A 3HS2 1 2Zn21 21.07 56a

Zn4S6
4- 1 6H1 A 6HS2 1 4Zn21 25.22 56a

ZnS(sphalerite) 1 H1 A HS2 1 Zn21 211.44 39
Zn(OH)2(b) 1 2H1 A Zn21 1 2H2O 11.93 44
Zn(OH)2(e) 1 2H1 A Zn21 1 2H2O 11.66 44
Zn(OH)2(c) 1 2H1 A Zn21 1 2H2O 11.88 44
ZnSO4(solid) A Zn21 1 SO4

22 3.55 44
ZnCO3(smithsonite) A Zn21 1 CO3

22 29.87 20
Zn5(OH)6(CO3)2 (hydrozincite) 1 6H1

A 5Zn21 1 2CO3
22 1 6H2O

9.65 57

a Experimental values extrapolated to I ~ 0.
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increase at greater depths. In core SC2, total dissolved total
inorganic carbon and total phosphorus concentrations increase
with depth.

The dissolved major metal concentrations are close to the
equilibrium solubility of common soil minerals (Table 4). Dis-
solved silica concentrations are close to saturation with respect
to b-cristobalite, a quartz polymorph, but supersaturated with
respect to quartz. The dissolved aluminium concentrations
are close to saturation with respect to gibbsite, (Al(OH)3) and
not 7 Å chlorite (micaceous clay) which was identified in the
X-ray diffraction analysis of the sediments. The dissolved
calcium concentrations are undersaturated with respect to
calcite (CaCO3) in the surface sediments (1.5 cm), but super-
saturated at greater depths. Apatite (Ca5OH(PO4)3) is super-
saturated through out the core. In the top 5 cm, dissolved
iron concentrations are supersaturated with respect to sulfide
phases, and at greater depths, iron concentrations are below
detection.
Dissolved trace element concentrations are not exclusively

controlled by the solubility of sulfide phases when aqueous
complexation by HS2 and S22 is included (Table 4). Of the
seven trace elements measured, only cadmium and lead con-
centrations appear to be limited by the solubility of CdS(s)
and galena (PbS). Zinc and nickel concentrations are super-
saturated with respect to sphalerite (ZnS) and millerite (NiS)
by 2–4 orders of magnitude, and manganese and chromium
concentrations are undersaturated with respect to alabandnite
(MnS) and CrS (we do not have thermodynamic data for
Cr2S3). The high covellite (CuS) saturation indices (log SI 7–8)
may reflect the absence of known formation constants for
aqueous copper HS2 and S22 complexes. With the exception
of chromium, the stability of trace element HS2 and S22

complexes yields porewaters that are significantly undersatu-
rated with respect to carbonates or hydroxides. Cadmium,
copper, lead, nickel, and zinc are all undersaturated with respect
to otavite (CdCO3) and Cd(OH)2, malachite (Cu2CO3(OH)2),
tenorite (CuO), cerussite (PbCO3), NiCO3 and Ni(OH)2, rhodo-
chrosite (MnCO3) and Mn(OH)2, and smithsonite (ZnCO3),
and b-Zn(OH)2. Dissolved chromium concentrations are

Table 2 Porewater trace- and major-elements extracted from Seaplane Lagoon core SC4 (July 10, 1998). Calcium, iron, potassium, magnesium,
manganese, sodium, and silica were measured by ICP-AES. Aluminium, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc were
measured by ICP-MS. Uncertainty for potassium was not reported

ICP-AES

Sample ID Depth/cm Ca (ppm) Fe (ppm) K (ppm) Mg (ppm) Mn (ppm) Na (ppm) Si (ppm)

SC4-1 1.5 327¡1 2.20¡0.01 318 1017¡2 0.366¡0.002 7870¡20 14.4¡0.0
SC4-2 4.5 355¡1 0.20¡0.01 340 1133¡2 0.195¡0.003 8440¡20 20.9¡0.0
SC4-3 7.5 350¡2 v0.2 346 1192¡2 0.182¡0.004 8600¡30 22.4¡0.1
SC4-4 10.5 388¡1 v0.2 374 1368¡3 0.275¡0.002 9540¡20 23.0¡0.1
SC4-5 13.5 390¡1 v0.2 398 1414¡4 0.375¡0.001 9800¡40 21.3¡0.1
SC4-6 16.5 410¡2 v0.2 435 1493¡3 0.431¡0.001 10400¡200 20.9¡0.0
SC4-7 19.5 430¡2 v0.2 474 1546¡5 0.271¡0.002 10900¡100 21.3¡0.1
SC4-8 22.5 444¡2 0.69¡0.00 487 1620¡6 0.173¡0.001 11500¡100 21.4¡0.1
SC4-9 25.5 438¡1 v0.2 496 1604¡4 v0.1 11400¡100 21.6¡0.1
SC4-10 28.5 434¡2 v0.2 560 1633¡4 v0.1 11700¡0 21.2¡0.1
SC4-11 31.5 436¡3 v0.2 461 1639¡3 v0.1 11800¡0 21.7¡0.0
SC4-12 34.5 427¡2 v0.2 509 1640¡5 v0.1 11800¡100 21.9¡0.1

ICP-MS

Sample ID Depth/cm Al (ppb) Cd (ppb) Cr (ppb) Cu (ppb) Fe (ppb) Mn (ppb) Ni (ppb) Pb (ppb) Zn (ppb)

SC4-1 1.5 2.4¡0.2 0.19¡0.02 0.53¡0.06 0.52¡0.09 3000¡60 395¡4.0 2.00¡0.24 0.19¡0.02 4.12¡0.70
SC4-2 4.5 6.2¡0.1 0.14¡0.02 1.89¡0.23 0.46¡0.08 1400¡70 165¡1.7 1.38¡0.17 0.43¡0.05 4.00¡0.68
SC4-3 7.5 2.6¡0.1 0.80¡0.10 2.35¡0.28 0.35¡0.06 1000¡70 175¡3.5 1.34¡0.16 0.30¡0.04 2.82¡0.48
SC4-4 10.5 6.6¡0.1 0.12¡0.01 2.80¡0.34 0.55¡0.09 500¡25 263¡5.3 1.37¡0.16 0.46¡0.06 3.21¡0.55
SC4-5 13.5 2.2¡0.1 0.20¡0.02 2.91¡0.35 0.92¡0.16 v110 462¡9.2 1.25¡0.15 0.38¡0.05 5.61¡0.95
SC4-6 16.5 3.8¡0.3 0.08¡0.01 4.19¡0.50 1.00¡0.17 v110 536¡10.7 1.23¡0.15 0.86¡0.10 6.83¡1.16
SC4-7 19.5 5.3¡0.2 0.12¡0.01 5.40¡0.65 0.76¡0.13 v110 304¡3.0 1.18¡0.14 1.06¡0.13 7.36¡1.25
SC4-8 22.5 3.5¡0.2 0.25¡0.03 5.74¡0.69 2.67¡0.45 v110 188¡1.9 1.19¡0.14 1.05¡0.13 9.45¡1.61
SC4-9 25.5 8.2¡0.3 v0.06 6.04¡0.72 1.97¡0.33 v110 52¡0.5 v0.2 0.67¡0.08 6.28¡1.07
SC4-10 28.5 38.4¡0.8 0.29¡0.03 7.51¡0.90 1.08¡0.18 v110 10¡0.3 1.20¡0.14 1.58¡0.19 5.04¡0.86
SC4-11 31.5 4.4¡0.2 0.24¡0.03 9.61¡1.15 0.69¡0.12 v110 2¡0.1 1.00¡0.12 1.65¡0.20 6.88¡1.17
SC4-12 34.5 8.3¡0.2 0.63¡0.08 15.38¡1.85 0.94¡0.16 v110 v1 0.97¡0.12 4.07¡0.49 8.64¡1.47

Table 3 Porewater concentrations of total P, total carbon (TC), total
inorganic carbon (TIC), and total organic carbon (TOC), total S, Cl-
and pH from Seaplane Lagoon cores collected on July 10, 1998 (na ~
not analyzed)

Core SC2

Sample ID Depth/cm P (ppm) TC (ppm) TIC (ppm) TOC (ppm)

SC2-0 0.5 na na na
SC2-1 1.5 1.2 na na na
SC2-2 4.5 2.0 80 na v14
SC2-3 7.5 1.9 95 86 v14
SC2-4 10.5 1.2 100 84 18
SC2-5 13.5 1.5 123 119 17
SC2-6 16.5 2.0 147 161 v14
SC2-7 19.5 1.7 182 na na
SC2-8 22.5 2.2 230 250 v14
SC2-9 25.5 2.7 259 na na

Core SC4

Sample ID Depth/cm S (ppm) Cl2 (ppt) pH

SC4-1 1.5 686 17.1 7.35
SC4-2 4.5 736 17.9 7.52
SC4-3 7.5 759 28.7 8.05
SC4-4 10.5 859 20.2 8.09
SC4-5 13.5 893 21.7 7.74
SC4-6 16.5 949 21.6 7.83
SC4-7 19.5 976 24.7 7.68
SC4-8 22.5 996 25.2 7.75
SC4-9 25.5 952 25.5 7.56
SC4-10 28.5 955 26.1 7.35
SC4-11 31.5 1036 26.0 7.76
SC4-12 34.5 1021 27.5 7.39
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1 to 6 orders-of-magnitude higher than eskolaite (Cr2O3) and
magnesiochromite (MgCrO4) saturation. Manganese is the
only trace metal that may be controlled by phosphate mineral
solubility, with concentrations that are slightly undersaturated
with respect to MnHPO4(s).

3.2 Depth profiles of the bulk sediment chemistry and
mineralogy

The depth profiles of cadmium, chromium, cobalt, copper,
iron, lead, manganese, nickel, sulfur and zinc for the cores
are shown in Fig. 3 and tabulated in Table 5. The chemical
composition of the sediments with depth is quite uniform in
the six cores. In the undisturbed 0.5 m push cores, cadmium,
chromium, copper, lead, mercury, and zinc concentrations
increase from low values in the surface sediments to higher
values at depths greater than 20 to 30 cm below the sediment–
water surface. The concentrations range from 10 to 350 mg g21

for cadmium, from 230 to 1150 mg g21 for chromium, from 100
to 240 mg g21 for copper, from 180 to 1400 mg g21 for lead,
from 110 to 180 mg g21 for nickel, and from 240 to 630 mg g21

for zinc. Cobalt concentrations are low and vary between
14 and 30 mg g21, with peak concentrations at depths of 20
to 45 cm as high as 160 mg g21. Manganese concentrations
are constant with depth and are about 450 mg g21. Iron
concentrations increase from about 4.5 wt% in the surface
sediments to about 5.5 wt% at depths greater than 10 cm.
Sulfur concentrations increase from 1 wt% in the surface
sediments to about 2 wt% at depths of 30 to 40 cm. Gravity
cores sampled the sediments to greater depth (1 m) than the
push cores, and show that the trace metals concentrations
continue to increase to about 80 cm (Table 5). At greater
depths the concentrations drop to very low levels comparable
to the pristine levels in San Francisco Bay.21

No trends in sediment mineralogy were observed as a
function of depth. The sediments are primarily quartz with
about 10 to 15 wt% phyllosilicate minerals. There is no
difference in the bulk mineralogy as a function of depth.
Minerals identified in XRD patterns are 80–90% quartz, and a
minimum of 2 wt% hornblende, mica, chlorite, smectite, illite,
and pyrite.

3.3 Depth profiles of metal bonding from XAS analysis

Analyses of EXAFS and XANES spectra were used to
determine the dominant local coordination environment of
individual metals in the sediments. In bulk samples, the
absorption signal is an average of all coordination environ-
ments of a particular element. Although absorption spectra
were collected on samples with porewater present, the XAS
signal is dominated by sites associated with solid phases
because metal concentrations are roughly three orders-of-
magnitude higher in the solids than in the associated pore-
water. Ligands in the first coordination shell were identified
as either sulfur or oxygen. Quantitative analysis of EXAFS
spectra was used to estimate the relative amount of ligation
by sulfur (as sulfide) or oxygen atoms, or as a mixture of
both atoms. Qualitative comparisons and linear combinations
of XANES spectra of reference compounds were used to
determine dominant components in the sediment samples for
elements for which good quality EXAFS spectra could not be
obtained.

3.3.1 Sulfide-associated metals. X-ray absorption spectra
for cadmium from two sediment samples show that cadmium
is bonded only by first-neighbor sulfur atoms (Fig. 4a). There
is no evidence in the EXAFS spectra for coordination by
oxygen, which would be evident by a shift to a shorter first-
shell distance characteristic of Cd–O bond lengths. There is
also no evidence for backscattering from atoms beyond the firstT
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coordination shell. Sediment spectra are identical to those of
two freshly precipitated cadmium sulfide samples, which are
the same regardless of whether or not iron was present in the
reactant solution. First coordination shell Cd–S interatomic
distances determined from least-squares fits are similar to those
of crystalline CdS (Table 6), consistent with coordination in
a sulfide phase (for which NCd–S ~ 4). The lack of atomic
backscattering beyond the sulfur coordination shell for both
the natural sediments and the reference laboratory precipitates
indicates that the cadmium sulfide phase is highly disordered
on a local atomic scale. Although the total cadmium concen-
trations differ significantly between the sample at 34.5 cm
(192 mg g21Cd) and at 55.0 cm (1222 mg g21Cd), the local
coordination determined by EXAFS analysis is identical.
Analyses of zinc EXAFS spectra indicate that zinc is

dominantly coordinated in a sulfide phase in the sediments,
with a secondary fraction of zinc associated with an oxide
component (Fig. 4b). Interatomic distances derived from fits
indicate that the sulfide component is locally identical to that of
sphalerite (ZnS, for which first coordination shell NZn–S ~ 4)
(Table 6). However, the much lower peak amplitudes in the
Fourier transforms of the sediment samples spectra compared
to those of crystalline sphalerite show that backscattering from
zinc and sulfur atoms beyond the first sulfur shell is weak. This
indicates formation of a poorly crystalline sulfide phase and/or
small particle size. For the oxide component, zinc EXAFS
spectra do not correspond to a single zinc oxide phase. Zinc
occurs in oxide and silicate compounds in both octahedral
and tetrahedral coordination. First coordination shell least-
squares fits gave average Zn–O distances that were variable
but consistent with dominantly octahedral coordination of zinc

(Table 6). Analyses of the scattering from second neighbor
Zn–Me atoms (where Me is a metal cation) gave interatomic
distances indicative of edge sharing of octahedra (RZn–Me ~
3.06–3.13 Å), and of corner sharing of octahedra and/or
tetrahedra (RZn–Me~ 3.21–3.37 Å). Because the backscattering
functions overlap one another in this range of interatomic
distances, the spectra could not be uniquely fit by a single
element for each atomic shell. The closer Zn–Me shell could be
fit with a combination of iron (or similar Z transition metal),
magnesium, or aluminium. The more distant Zn–Me shell
could be fit with iron, aluminium, or silicon. These observa-
tions suggest zinc substitution in one or more silicate or oxide
phases. Given that phyllosilicate minerals comprise about 10–
15 wt% of the bulk sample, it is likely that some zinc is present
in these minerals. Substitution of zinc into the octahedral sites
of clay minerals or micas is consistent with the interatomic
distances determined for the oxide component. Substitution
of small amounts of zinc into other oxide phases such as
magnetite cannot be determined from these data.
The relative atomic proportions of zinc sulfide and oxide

components in the sediments were estimated from fits to
Fourier-filtered first coordination shell EXAFS spectra. Zinc
was assumed to be tetrahedrally coordinated by sulfur in the
sulfide component and octahedrally coordinated by oxygen in
the oxide component. In fits to the total EXAFS spectra,
interatomic distances and coordination numbers (N) for zinc
and sulfur shells were fixed on crystallographic values for
sphalerite (Table 6), with N scaled to the proportion of sulfide
component determined in the first coordination shell fit. Using
this approach, there is little change in the relative proportions
of sulfide and oxide components as a function of depth in core

Fig. 3 Chemical composition of Seaplane Lagoon sediments from cores SC2, SC3, SC4 (left hand columns), C1, C2, and C3 (right hand columns).
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SC4. The oxide component comprises 22–25% of the zinc
atomic component even though total zinc concentration
increases from 287 mg g21 at 2.5 cm to 515 mg g21 at 34.5 cm.
In a different core (C3), a sample from 55 cm depth shows a
higher relative proportion of sulfide component, about 90%,
although the total zinc concentration (486 mg g21) is similar
to that of core SC4 at 34.5 cm (515 mg g21).

3.3.2 Oxide-associated metals. Both chromium and lead are
associated with oxide phases in the sediments and there is
no evidence for association with sulfide minerals. Analyses of
XANES (Fig. 4c) and EXAFS (Fig. 4d) spectra for chromium
show no evidence for the presence of sulfur backscatterers and
indicate Cr(III) only. The presence of Cr(VI) would be readily
apparent by a distinctive pre-edge feature in the XANES

Fig. 4 (a) Normalized EXAFS and corresponding radial structure functions (uncorrected for phase shift of backscattering atoms) for cadmium in
two NAS Alameda sediment samples from core SC4-12 (34.5 cm) and core C1-2 (5.5 cm) compared to reference precipitates, cadmium sulfide
(CdS(ppc)) and a mixture of cadmium and iron sulfide (CdS–FeS) precipitated from solution immediately before data collection, and crystalline
cadmium sulfate (CdSO4(s)). Dashed red line is the non-linear least-squares best fit. (b) Normalized EXAFS and corresponding radial structure
functions (uncorrected for phase shift of backscattering atoms) for zinc in sediment samples from core SC4 (at 1.5 and 34.5 cm) and core C3-9 (55 cm)
compared to a reference spectrum of crystalline sphalerite (ZnS(s)). Dashed red line is the non-linear least-squares best fit; green line is the fit
component corresponding to sphalerite; blue line is the fit for a zinc–oxygen component that probably represents zinc substitution in detrital
phyllosilicate or oxide minerals. (c) Normalized XANES spectra and corresponding first-derivative spectra for chromium in samples from cores SC4
(at 1.5 and 34.5 cm), SC9 (at 2.5 and 30 cm) and SC7 (at 18.5 cm) compared with reference spectra for crystalline chromium sulfide and potassium
chromate compounds. (d) Normalized EXAFS and corresponding radial structure functions (uncorrected for phase shift of backscattering atoms)
for chromium in sediment samples SC2-7, SC4-1, and SC4-12 compared to reference crystalline potassium chromate. Dashed red line is the non-
linear least-squares best fit. Oxidation of Cr(III) to Cr(VI) results in a significant shift of the first-shell oxygen peak to shorter interatomic distance.
(e) Normalized XANES spectra for lead in samples from core SC4 (at 1.5, 31.5, and 34.5 cm) compared with reference spectra for crystalline lead
sulfide, oxide, and carbonate compounds.
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Table 6 EXAFS analyses

Cadmium EXAFS analysis

Core Atom R/Å N s2/Å2 DE0/eV

Sediments
SC4-12 Cd–Sa 2.50e 4.0 0.0044e 21.0e

34.5 cm
192 ppm
C1-2 Cd–Sa 2.51e 4.0 0.0051e 21.4e

55.0 cm
1222 ppm
SC4-11 Cd–Sb 2.51 1.9e 0.0050 24.1e

31.5 cm Cd–Ob 2.31e 3.2e 0.0120e

Leached

Reference precipitatesc

Cd1.0S Cd–S 2.51e 4.0 0.0056e 21.7e

Cd0.25S Cd–S 2.51e 4.0 0.0048e 22.6e

Reference compound: greenockite (CdS)d

Cd–S 2.52 1
Cd–S 2.53 3
Cd–Cd 4.12 6
Cd–Cd 4.13 6

Scale factor (S0
2) ~ 1.5. a First-shell Cd–S coordination fixed at 4;

R and s2 were varied. b For the sulfide component, R and s2 were
fixed on the average of values determined from fits to reference preci-
pitates; N was varied. If NCd–S ~ 4 and NCd–O ~ 6 are assumed,
then the sulfide component is 47% and the oxide component is 53%
of the total absorption spectrum. c Cadmium sulfide was precipitated
by adapting an FeS method.10 XAS spectra collected on wet samples
immediately after precipitation. d Crystallographic values for green-
ockite from ref. 58. e Parameter varied in least-squares fits.

Zinc EXAFS analysis

Core Rel. % Atom R/Å N s2/Å2 DE0/eV

Sulfide componentf

SC4-1 75 Zn–S 2.33 3.0l 0.0065 25.2l

2.5 cm Zn–Zn 3.83 8.9 0.0231l

287 ppm Zn–S 4.49 8.9 0.0267l

SC4-12 78 Zn–S 2.33 3.1l 0.0065 26.3l

34.5 cm Zn–Zn 3.83 9.3 0.0221l

515 ppm Zn–S 4.49 9.3 0.0297l

C3-9 90 Zn–S 2.33 3.6l 0.0065 25.2l

55.0 cm Zn–Zn 3.83 10.8 0.0259l

486 ppm Zn–S 4.49 10.8 0.0257l

SC4-11 25 Zn–S 2.33 0.9l 0.0065 25.9l

31.5 cm Zn–Zn 3.82 2.6 0.0225l

Leached Zn–S 4.49 2.6 0.0139l

Oxide componentg

SC4-1 25 Zn–O 2.04l 1.7l 0.0065 25.2l

2.5 cm Zn–Meh 3.13l 1.0l 0.0080
287 ppm Zn–Mei 3.13l 0.8l 0.0100
SC4-12 22 Zn–O 1.99l 1.4l 0.0065 26.3l

34.5 cm Zn–Meh 3.06l 0.9l 0.0080
515 ppm Zn–Mei 3.13l 0.8l 0.0080

Zn–Mej 3.21l 1.7l 0.0080
C3-9 10 Zn–O 2.09l 1.4l 0.0065 25.2l

55.0 cm Zn–Mef 3.10l 0.4l 0.0080
486 ppm
SC4-11 75 Zn–O 2.02l 3.2l 0.0065 25.9l

31.5 cm Zn–Meh 3.13l 1.3l 0.0080
Leached Zn–Mej 3.39l 0.6l 0.0080

Reference compound: sphalerite (ZnS)k

Zn–S 2.33 4
Zn–Zn 3.83 12
Zn–S 4.49 12

Scale factor (S0
2) ~ 1.0. f Sulfide component: Interatomic distances

(R) for Zn–S and Zn–Zn fixed on crystallographic values in sphaler-
ite; first-shell s2 for Zn–S was fixed on an empirical value determined
from fits to sulfide reference compounds. For higher Zn–Zn and Zn–S

Table 6 EXAFS analyses (continued)

shells, N was fixed on the value calculated from the proportion of
sphalerite component determined in fits to filtered first-shell spectra
and s2 was varied. g Oxide component: Values for s2 were fixed for
all shells based on empirical fits to reference compounds; R and N
were varied. h Backscatterer is Fe or similar transition metal cation;
edge-sharing octahedra. i Backscatterer is Mg or Al; edge-sharing
octahedra. j Backscatterer is Fe or Si; corner-sharing octahedra or
tetrahedra. k Crystallographic values for sphalerite from ref. 28.
l Parameter varied in least-squares fit.

Chromium EXAFS analysis

Core Atom R/Å N s2/Å2 DE0/eV

Oxide componentm

SC2-7 Cr–O 1.97s 6.0 0.0035s 28.5s

19.5 cm Cr–Men 3.01s 1.9s 0.0100
v2 mm Cr–Meo 3.00s 1.7s 0.0100
392 ppm Cr–Fe 3.42s 1.8s 0.0080
SC4-1 Cr–O 1.98s 6.0 0.0041s 28.9s

1.5 cm Cr–Mep 2.97s 1.6s 0.0080
243 ppm Cr–Fe 3.44s 1.9s 0.0080
SC4-12 Cr–O 1.97s 6.0 0.0041s 26.0s

34.5 cm Cr–Mep 3.02s 1.1s 0.0100
766 ppm Cr–Fe 3.44s 2.2s 0.0080
SC4-11 Cr–O 1.98s 6.0 0.0037s 28.8s

31.5 cm Cr–Op 3.00s 1.8s 0.0100
Leached Cr–Fe 3.42s 1.2s 0.0080

Reference compounds
Cr2S3

q Cr–S 2.42 6
Cr–Cr 2.79 2
Cr–S 4.20 6

K2Cr2O7
r Cr–O 1.52, 1.54,

1.73, 1.85
4

Cr–Cr 3.13 1
Cr–K 3.26 1

Scale factor (S0
2) ~ 0.90. m Oxide component: First-shell Cr–O coor-

dination fixed at 6; s2 was varied. For higher shells, values for s2

were fixed based on empirical fits to reference compounds; R and N
were varied. n Backscatterer is Mg or Al; edge-sharing octahedra.
o Backscatterer is Fe or similar transition metal cation; edge-sharing
octahedra. p Fit with single shell of Fe atoms; probably a disordered
shell of Al, Mg, and Fe atoms. q Crystallographic values from ref. 59.
r Crystallographic values from ref. 60. s Parameter varied in least-
squares fits.

Iron EXAFS analysis

Core Rel. % Atom R/Å Nw s2/Å2 DE0/eV

Pyrite componentt

SC4-1 35.6 Fe–S 2.25 0.80 0.0011 27.2w

2.5 cm Fe–S 3.44 0.80 0.0066
Fe–Fe 3.82 1.60 0.0066

SC4-12 38.5 Fe–S 2.25 0.92 0.0011 26.7w

34.5 cm Fe–S 3.44 0.92 0.0066
Fe–Fe 3.82 1.84 0.0066

SC4-11 21.4 Fe–S 2.25 0.66 0.0011 28.3w

31.5 cm Fe–S 3.44 0.66 0.0066
Leached Fe–Fe 3.82 1.32 0.0066

Oxide componentu

SC4-1 64.4 Fe–O 2.00w 2.64 0.0048 23.4w

2.5 cm Fe–Fe 3.10w 0.53 0.0050
Fe–Si 3.26 1.43 0.0057
Fe–Fe 3.39w 0.29 0.0057

SC4-12 61.5 Fe–O 2.00w 2.79 0.0048 23.2w

34.5 cm Fe–Fe 3.09w 0.62 0.0050
Fe–Si 3.26 1.15 0.0057
Fe–Fe 3.43w 0.41 0.0057

SC4-11 78.6 Fe–O 2.00w 3.12 0.0048 20.5w

31.5 cm Fe–Fe 3.09w 0.92 0.0050
Leached Fe–Si 3.26 0.82 0.0057

Fe–Fe 3.39w 0.41 0.0057
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spectrum and by much shorter Cr–O distances than obtained in
first coordination shell fits to the EXAFS spectra (Table 6).
Comparison of normalized and first-derivative XANES spectra
for shallow and deep sediments from two cores (SC4 and
SC9) are very similar, with slight differences in spectral shape
above the energy of maximum absorption revealed in first-
derivative spectra (Fig. 4c). XANES spectra of two samples
from intermediate depths (SC7-18 and SC2-7) are very similar
to the chromium spectra of shallow cores.
Likewise, EXAFS spectra for three sediment samples are

generally very similar regardless of total chromium concentra-
tion which increases with depth in core SC4 from 245 mg g21

at 1.5 cm to 766 mg g21 at 34.5 cm. All spectra have identical
first-shell coordination and slight differences in backscatter-
ing amplitudes for more distant atomic shells (Fig. 4d and
Table 6). Interatomic distances obtained from EXAFS fits do
not correspond to a single identifiable chromium oxide phase.
First coordination shell Cr–O distances are typical of octahe-
dral coordination of Cr(III) by oxygen in oxide and silicate
compounds. Distances obtained from fitting of higher shells are
consistent with edge-sharing of metal octahedra and corner-
sharing of metal octahedra and/or tetrahedra. Differences in
the amplitude of backscattering from atoms at 2.97–3.02 Å
appear to be related to cancellation effects among atoms such
as iron (or similar Z elements), magnesium, and aluminium at
slightly different Cr–Me interatomic distances. Backscattering
from atoms at 3.42–3.44 Å is more consistent and best fit with
iron. These structural results are consistent with chromium
substitution in phyllosilicates, association with spinel phases
such as chromite or magnetite, and/or inner-sphere adsorp-
tion on oxides or silicates. As discussed below, chromium in
the sediments originates from both contaminant and detrital
sources, with the contaminant fraction dominant in deeper
sediments. The spectral results, however, do not indicate major
changes in chromium bonding with depth.
Comparison of XANES spectra for lead in the sediments

and in reference compounds indicates that lead is bonded by
oxygen. Coordination of lead by sulfur would result in a shift
of maximum absorption at the Pb LIII edge to significantly
lower energy (Fig. 4e). The energy of maximum absorption
is consistent with lead coordination in either oxide, phosphate,
or carbonate phases. There are no changes in the XANES
spectra of samples from core SC4 even though the total lead
concentration increases significantly from 214 mg g21 at 1.5 cm
to 1269 mg g21 at 34.5 cm. Previous analysis of first-neighbor
atomic scattering in one lead EXAFS spectrum (SC9-12,
30 cm depth) indicated the presence of oxygen atoms only.22

Quantitative analyses of two lead EXAFS spectra from core
SC4 were precluded by poor data quality, but there was no
evidence for backscattering from sulfur atoms. Lead exhibits
high static disorder in its local oxygen coordination in a

number of lead oxide, (oxy)hydroxide, phosphate, and carbo-
nate compounds, and thus, first coordination shell distances
are not diagnostic of a particular phase.16,23,24 Evidence from
the XANES and EXAFS spectra are consistent with lead
coordination in either carbonate, phosphate, or (oxy)hydroxide
phases, or as an oxygen-ligated sorbed complex.

3.3.3 Manganese and iron. Manganese concentrations in the
sediments vary between 350–550 mg g21 and do not generally
increase with depth, as do the contaminant metals. Compa-
rison of the manganese XANES spectra as a function of depth
in core SC4 indicates no significant changes among samples
between 1.5 and 31.5 cm (Fig. 5a). Examination of first-
derivative XANES spectra shows only slight variations in the
energy positions of major inflection points among the sediment
samples. The sediment XANES spectra could not be entirely
fit with a single reference compound or by linear combinations
of two or three manganese reference compounds, including
combinations of carbonate, phosphate, sulfate, sulfide, and

Fig. 5 (a) Normalized XANES spectra and corresponding first-
derivative spectra for manganese in samples from cores SC4 (at 1.5,
17.0, and 31.5 cm) and SC9 (at 0.0 and 10.2 cm) compared with
reference spectra for synthetic manganese(IV) oxide (MnO2, pyrolusite),
birnessite (layered Mn(III,IV) oxide) precipitated on quartz (birnessite/
SiO2), a natural Mn-phosphate (Li(Fe, Mn)PO4, ferrisicklerite), and
Mn(II) sulfide (MnS). (b) Normalized EXAFS and corresponding radial
structure functions (uncorrected for phase shift of backscattering
atoms) for iron in sediment samples from core SC4 (at 1.4 and 34.5 cm)
compared to reference spectra of crystalline pyrite (FeS2(s)) and of iron
substituted in reference illite IMt-1 (Clay Minerals Source Repository).
Dashed red line is the non-linear least-squares best fit; green line is the
fit component corresponding to pyrite; blue line is the fit for an iron–
oxygen component that probably represents iron substitution in
phyllosilicate or oxide minerals.

Table 6 EXAFS analyses (continued)

Reference compound: pyrite (FeS2)
v

Fe–S 2.25 6
Fe–S 3.44 6
Fe–Fe 3.82 12

t Pyrite component: Interatomic distances (R) were fixed on crystallo-
graphic values from pyrite and s2 was fixed on values determined
from fits to reference sulfide compounds. N for each shell was floated
as a linked variable in proportions based on the known coordination
in pyrite. Relative percent (Rel. %) for pyrite or oxide components is
calculated from the integrated fit areas of all atomic shells compris-
ing each component (normalized to 100%). u Oxide component:
Values for s2 were fixed for all shells based on empirical fits to refer-
ence compounds of similar composition and structure; R and N were
varied, except for the Fe–Si shell, which will co-vary with Fe shells if
floated independently. This shell was fixed on a typical crystallo-
graphic distance for Fe–Si in phyllosilicates. v Crystallographic
values from ref. 61. w Parameter varied in least-squares fit.
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oxide minerals. This suggests that manganese is substituting
in other minerals or forming solid solutions rather than
forming pure manganese compounds. Absorption edge fea-
tures fromy6548–6555 eV are similar to a natural speciman of
ferrisicklerite (Li[Fe31,Mn21]PO4), a mixed iron–manganese
phosphate mineral, indicating a phosphate component that
comprises roughly one-third to one-half of the manganese in
the sediment samples. Two samples from a different core,
SC9 collected in April 1998, show some spectral features below
y6548 eV that can be attributed to manganese associated
with sulfide, which is variable among samples and comprises
from 0 to y20% of manganese in the sediments.{ Absorption
features above 6555 eV could not be well fit with pure
manganese reference compounds. The sediment samples have
a second absorption maximum at 6557–6558 eV, which is
near to observed maxima for Mn(III) and Mn(II,III) oxide
compounds.25,26 Manganese(IV) oxide compounds generally
have absorption maxima at higher energy (6560 eV or above)
(Fig. 5a). These comparisons suggest that a large fraction of
manganese is bonded predominately in an oxide component
as Mn(III) or as a mixture of Mn(II,III). This is consistent with
substitution of manganese into detrital phyllosilicate or oxide
minerals in concentrations on the order of 100–300 mg g21

(about half of the total manganese sediment concentrations).
Iron in the sediments is a major element, occurring in

concentrations of about 4–6 wt% (Fig. 3 and Table 5).
Analyses of EXAFS spectra from core SC4 indicate both
sulfide and oxide iron components (Fig. 5b). The sulfide
component is clearly identified as pyrite based on interatomic
distances derived from fits of Fe–S and Fe–Fe shells (Table 6).
In the sediment samples, backscattering amplitudes are lower
for Fe–S and Fe–Fe shells beyond the first sulfur coordina-
tion shell than in the crystalline pyrite reference compound
(Fig. 5b). This suggests poor crystallinity and/or small par-
ticle size.27 Iron monosulfide (amorphous FeS or crystalline
mackinawite), which has a different atomic structure than
pyrite,28 could not be fit in the spectra. If FeS is present, it
must comprise less than about 5 atom% of total iron to be
undetected in the EXAFS spectra.22 Analyses of XANES
spectra indicates that below y1–2 cm depth the primary iron
oxide component in the sediment is a phyllosilicate which is
most similar in structure to iron substituted into mica (e.g.,
illite, muscovite, or biotite).29 Other minor iron oxide compo-
nents that might be present include chlorite and magnetite.
Based on qualitative information from XANES spectra, the
oxide component in the EXAFS spectra was fit with four
shells (Table 6), Fe–O at 2.00 Å, Fe–Fe at 3.08–3.10 Å, Fe–Si
at 3.26 Å, and Fe–Fe at 3.39–3.42 Å, to account for all
primary Fe–X distances in phyllosilicates and Fe(III) oxides (if
present). Based on EXAFS fits to core SC4 spectra, the relative
proportion of iron in pyrite compared to oxide phases increases
only slightly with depth (y3%) from 1.5 to 34.5 cm with no
change in interatomic distances. Over this interval, total iron
concentration increases from 4.4 to 5.3 wt%.

3.4 Reaction rates from oxidation experiments

Trace metal dissolution during the sediment oxidation experi-
ments are shown in Fig. 6 as the net rate and the percent metal
dissolved versus time. The rates of reaction for each element
were calculated according to:

Rate (day21) ~ D[i]aq 6 FR 6 (wtsediment 6 [i]sediment)
21

where D[i]aq (1026 g g21) is the difference in concentration
between the output and input (seawater blank) solutions, FR

(g day21) is the flow rate, and (wtsediment (g) 6 [i]sediment

(1026 g g21)) is the total concentration of each element in the
sediment. We use the respective seawater blank analyses as our
input solutions to directly correct for any trace metal contami-
nation from the laboratory environment as a function of time
(the experiments were not conducted in a Class 100 clean room).
Normalization to total concentration allows reactivity among the
metals to be compared directly. We also show the total metal
dissolved as the percent metal dissolved normalized to the
concentration of the initial metal in the sediment versus time. The
averaged rates, percent metal dissolved, and associated uncer-
tainties are calculated from the triplicate experiments (Table 7).

Fig. 6 Oxidation rates of reduced sediments (SC4-11) in seawater
plotted as the metal concentration dissolved per day normalized to the
remaining metal concentration in the sediment (right side) and as the
total metal concentration dissolved normalized to the initial metal
concentration in the sediment (left side).

{ Based on the analysis of one EXAFS spectrum, the Mn sulfide com-
ponent was previously overestimated in O’Day et al.22 Re-analyses of
XANES spectra suggest at most about 20% Mn sulfide in the sediments.
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Table 7 Results of leaching experiments with sediment SC4-11 (runs A, B, C, and blank) as dissolved trace-metal concentrationsa

Sediment SC4-11-A

Sample ID
Time/
days

Flow
rate/g
day21 pH Cd (ppb) Cr (ppb) Cu (ppb) Mn (ppb) Ni (ppb) Pb (ppb) Zn (ppb)

SC4-11-A-1 0.47 a 8.01 0.78¡0.02 0.75¡0.51 3.82¡0.11 42.5¡1.6 2.98¡0.08 1.26¡0.01 16.45¡0.37
SC4-11-A-2 1.42 41.92 7.78 2.12¡0.03 0.44¡0.24 1.29¡0.10 22.0¡0.7 2.20¡0.03 1.92¡0.02 11.39¡0.10
SC4-11-A-3 2.35 42.65 7.81 3.95¡0.05 0.24¡0.13 1.34¡0.04 17.5¡0.4 1.79¡0.03 2.67¡0.03 16.59¡0.29
SC4-11-A-4 3.34 42.97 7.82 6.50¡0.09 0.31¡0.11 1.47¡0.05 16.1¡0.4 1.42¡0.04 2.98¡0.01 17.55¡0.23
SC4-11-A-5 4.41 43.47 7.87 na na na na na na na
SC4-11-A-6 5.42 43.58 7.87 na na na na na na na
SC4-11-A-7 6.39 43.91 7.83 11.20¡0.14 0.22¡0.11 1.85¡0.13 18.7¡0.8 1.55¡0.03 2.84¡0.01 17.16¡0.37
SC4-11-A-8 7.37 43.75 7.81 na na na na na na na
SC4-11-A-9 11.36 44.64 7.93 16.14¡0.25 0.32¡0.05 2.66¡0.10 17.7¡0.4 2.18¡0.04 2.82¡0.03 23.43¡0.16
SC4-11-A-10 14.19 45.04 7.82 13.74¡0.11 0.28¡0.04 2.68¡0.12 14.7¡0.5 1.90¡0.02 2.65¡0.01 22.48¡0.43
SC4-11-A-11 18.43 45.31 7.82 12.77¡0.16 0.31¡0.06 2.64¡0.07 12.9¡0.5 1.92¡0.04 2.51¡0.03 18.88¡0.14
SC4-11-A-12 21.23 45.53 7.86 11.54¡0.04 0.26¡0.10 2.34¡0.07 10.9¡0.4 1.80¡0.03 2.50¡0.01 17.41¡0.24
SC4-11-A-13 25.72 46.56 7.77 10.92¡0.13 0.39¡0.28 3.31¡0.04 10.5¡0.4 2.03¡0.02 3.01¡0.01 18.63¡0.24
SC4-11-A-14 33.86 46.91 7.82 9.45¡0.11 0.41¡0.05 2.43¡0.08 8.50¡1.40 2.00¡0.04 2.32¡0.05 12.82¡0.20
SC4-11-A-15 39.91 47.81 7.87 na na na na na na na
SC4-11-A-16 47.75 41.16 8.05 na 0.38¡0.09 1.99¡0.08 na 2.21¡0.30 2.30¡0.28 na
SC4-11-A-17 54.75 44.60 7.81 10.11¡0.23 0.44¡0.11 2.90¡0.09 8.00¡0.30 2.10¡0.07 3.13¡0.01 18.08¡0.41
SC4-11-A-18 62.91 44.80 7.85 6.93¡0.14 0.41¡0.15 2.39¡0.06 5.90¡0.90 1.76¡0.01 2.21¡0.06 11.91¡0.22
SC4-11-A-19 76.90 48.08 7.87 2.81¡0.04 0.41¡0.13 1.77¡0.04 2.70¡0.20 1.16¡0.03 1.88¡0.02 7.58¡0.08
SC4-11-A-20 91.41 47.53 7.94 1.34¡0.10 0.36¡0.21 1.00¡0.01 na 0.88¡0.02 1.02¡0.05 3.91¡0.36

Sediment SC4-11-B

Sample ID
Time/
days

Flow
rate/g
day21 pH Cd (ppb) Cr (ppb) Cu (ppb) Mn (ppb) Ni (ppb) Pb (ppb) Zn (ppb)

SC4-11-B-1 0.47 a 7.98 0.42¡0.02 nd 0.91¡0.04 36.9¡0.7 1.26¡0.04 1.83¡0.05 6.88¡0.25
SC4-11-B-2 1.42 41.52 7.85 na na na na na na na
SC4-11-B-3 2.35 42.12 7.82 4.89¡0.05 nd 1.06¡0.06 18.6¡0.5 1.86¡0.05 3.51¡0.03 13.66¡0.16
SC4-11-B-4 3.34 42.59 7.86 9.71¡0.11 0.32¡0.113 1.41¡0.09 19.1¡0.7 2.21¡0.04 3.87¡0.04 17.59¡0.26
SC4-11-B-5 4.41 43.10 7.86 na na na na na na na
SC4-11-B-6 5.42 a 7.86 na na na na na na na
SC4-11-B-7 6.39 43.73 7.86 11.59¡0.13 0.37¡0.114 2.07¡0.06 15.4¡0.6 1.45¡0.05 3.03¡0.02 19.62¡0.33
SC4-11-B-8 7.37 43.84 7.84 12.12¡0.42 0.28¡0.074 1.85¡0.12 13.8¡0.4 nd 2.54¡0.08 19.94¡1.06
SC4-11-B-9 11.36 44.77 7.93 18.20¡0.18 0.36¡0.053 2.57¡0.12 13.7¡0.3 2.04¡0.03 3.69¡0.04 23.71¡0.28
SC4-11-B-10 14.19 45.36 7.79 19.87¡0.15 0.37¡0.045 2.85¡0.12 12.7¡0.3 2.12¡0.07 3.72¡0.05 24.53¡0.16
SC4-11-B-11 18.43 46.43 7.80 21.20¡0.24 0.33¡0.057 3.01¡0.07 11.2¡0.2 2.25¡0.04 3.61¡0.04 24.59¡0.17
SC4-11-B-12 21.23 46.81 7.80 23.01¡0.09 0.45¡0.096 2.96¡0.11 9.16¡0.16 2.22¡0.04 3.38¡0.04 22.65¡0.18
SC4-11-B-13 25.72 47.68 7.80 18.43¡0.29 0.33¡0.276 2.66¡0.11 6.17¡0.37 2.17¡0.06 2.99¡0.06 19.27¡0.32
SC4-11-B-14 33.86 48.92 7.81 14.20¡1.41 0.38¡0.050 2.66¡0.10 na 1.85¡0.04 3.09¡0.29 22.52¡3.77
SC4-11-B-15 39.91 50.83 7.86 8.27¡0.09 0.37¡0.045 3.31¡0.07 3.73¡0.22 1.61¡0.01 2.62¡0.07 15.25¡0.25
SC4-11-B-16 47.75 41.34 7.86 7.42¡1.28 0.42¡0.087 2.35¡0.06 na 1.84¡0.13 3.11¡0.35 na
SC4-11-B-17 54.75 44.49 7.79 7.74¡0.28 0.40¡0.112 2.61¡0.11 4.60¡0.54 1.70¡0.05 3.68¡0.10 19.64¡1.02
SC4-11-B-18 62.91 44.76 7.80 6.70¡0.74 0.44¡0.148 2.49¡0.08 na 1.46¡0.05 3.36¡0.23 15.42¡2.17
SC4-11-B-19 76.90 42.20 7.87 3.49¡0.06 0.38¡0.134 2.08¡0.06 2.28¡0.14 1.10¡0.04 2.57¡0.06 8.68¡0.12
SC4-11-B-20 91.41 49.85 7.87 15.24¡0.29 0.46¡0.214 1.84¡0.03 2.83¡0.42 4.16¡0.05 2.62¡0.21 13.79¡0.36

Sediment SC4-11-C

Sample ID
Time/
days

Flow
rate/g
day21 pH Cd (ppb) Cr (ppb) Cu (ppb) Mn (ppb) Ni (ppb) Pb (ppb) Zn (ppb)

SC4-11-C-1 0.47 a 7.96 0.52¡0.01 1.00¡0.51 13.71¡0.26 43.2¡1.3 4.96¡0.12 2.13¡0.02 22.43¡0.31
SC4-11-C-2 1.42 41.64 7.66 1.15¡0.01 0.30¡0.24 2.09¡0.10 22.0¡0.5 1.97¡0.06 1.96¡0.00 10.96¡0.15
SC4-11-C-3 2.35 42.49 7.84 2.50¡0.00 0.34¡0.13 2.07¡0.06 21.2¡0.5 1.65¡0.03 2.21¡0.02 13.31¡0.13
SC4-11-C-4 3.34 43.00 7.85 4.55¡0.02 0.32¡0.11 2.02¡0.07 19.8¡0.4 1.49¡0.05 2.06¡0.01 12.71¡0.13
SC4-11-C-5 4.41 43.67 7.85 na na na na na na na
SC4-11-C-6 5.42 43.84 7.86 14.59¡0.20 0.45¡0.07 1.38¡0.07 17.3¡0.6 1.17¡0.03 3.97¡0.03 21.49¡0.16
SC4-11-C-7 6.39 44.19 7.84 16.04¡0.06 0.29¡0.11 1.54¡0.05 16.1¡0.3 1.67¡0.06 4.09¡0.04 21.71¡0.13
SC4-11-C-8 7.37 44.33 7.86 15.70¡0.07 0.27¡0.07 1.54¡0.08 14.1¡0.4 na 3.63¡0.04 20.65¡0.23
SC4-11-C-9 11.36 45.42 7.91 23.54¡0.11 0.28¡0.05 2.05¡0.12 13.6¡0.3 2.30¡0.03 6.34¡0.05 29.54¡0.33
SC4-11-C-10 14.19 46.02 7.83 22.85¡0.24 0.39¡0.04 2.43¡0.15 14.4¡1.0 2.33¡0.08 4.73¡0.06 31.06¡0.37
SC4-11-C-11 18.43 47.27 7.80 19.52¡0.17 0.29¡0.06 2.80¡0.19 9.88¡0.21 2.21¡0.02 6.30¡0.07 28.26¡0.36
SC4-11-C-12 21.23 47.04 7.74 19.52¡0.10 0.26¡0.10 2.97¡0.06 8.88¡0.12 na 4.18¡0.03 25.56¡0.09
SC4-11-C-13 25.72 48.10 7.81 23.94¡3.95 nd¡0.28 5.95¡0.22 na 2.07¡0.11 3.94¡0.41 na
SC4-11-C-14 33.86 50.50 7.86 13.77¡0.26 0.41¡0.05 3.73¡0.14 5.15¡0.18 2.08¡0.03 4.41¡0.04 21.81¡0.11
SC4-11-C-15 39.91 54.43 7.85 10.33¡1.13 0.43¡0.04 2.37¡0.06 na na 2.97¡0.23 13.58¡2.22
SC4-11-C-16 47.75 39.49 7.89 na 0.51¡0.09 4.10¡0.19 na na 4.26¡0.54 na
SC4-11-C-17 54.75 45.85 7.87 10.53¡0.21 0.40¡0.11 3.54¡0.11 5.41¡0.97 2.57¡0.09 4.59¡0.15 29.81¡0.57
SC4-11-C-18 62.91 46.58 7.83 3.61¡0.07 0.57¡0.15 3.69¡0.10 3.62¡0.11 1.76¡0.04 5.19¡0.04 24.20¡0.26
SC4-11-C-19 76.90 51.01 7.88 1.59¡0.28 0.38¡0.13 2.17¡0.05 na 1.13¡0.10 3.37¡0.40 12.89¡3.12
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The net release of trace elements from the sediments is
complex and metal specific. The cadmium, zinc, manganese,
and copper release rates exhibit a rapid increase in dissolution
rate during the initial oxidation (1 to 20 days), followed by
continual decrease in release rates with time. After about 50
days of reaction, cadmium, zinc, manganese, and copper
dissolution slows to about 30, 10, 5, and 4% of their respective
initial sediment concentrations. After 90 days of reaction, the
cadmium, zinc, manganese, and copper concentrations in the
output solutions are near their respective concentrations in the
top core section (1.5 cm, Table 2). The observed non-steady
state dissolution behavior is indicative of concurrent dissolu-
tion of a reduced solid phase and precipitation of a stable
secondary phase that limits the transfer of the trace metals to
oxygen-rich seawater.
The net release rates of nickel, lead, and chromium are 10

to 100 times lower than the release rates of cadmium, zinc,
manganese, and copper. Additionally the rates are more or less
constant as a function of time, and show steady-state reaction
kinetics. Nickel release rates are constant within the scatter of
the data with the exception of one outlying data point at about
80 days. Lead release rates increase slightly during the first
10 days, are constant for the next 50 to 60 days, and decrease
slightly after 80 days. Chromium release is characterized by
minimal dissolution during the first 25 days followed by slightly
greater dissolution rates that are constant for the duration of
the experiment. These metals dissolve slowly with time; about
3% of the initial nickel, 1% of the initial lead and 0.1% of the
initial chromium dissolve after the reduced sediments have
reacted with seawater for 90 days.
For aluminium, calcium, potassium, iron, magnesium, and

silica we observed minimal reactivity. There were no changes
in the calcium, potassium and magnesium input and output
concentrations. The dissolved iron, aluminium, and silica
concentrations in the output solutions are below the analytical
detection limits. This is expected because quartz, phyllosili-
cates, and iron oxides have very low dissolution rates in
near-neutral seawater.

3.5 XAS analysis of metals in oxidized sediments

At the end of the 90 day oxidation experiment (SC4-11,
31.5 cm), sediments were re-examined with XAS to evaluate

changes in oxidation state and local coordination compared to
unreacted core sediments from similar depth. Cadmium, which
was entirely coordinated by sulfur in unreacted sediments, is
partially coordinated by oxygen in the reacted sample (Fig. 7a).
Analyses of the EXAFS spectrum showed about 47% atomic
coordination by oxygen and 53% coodination by sulfur. The
interatomic Cd–S distances are identical to those of cadmium
in unreacted sediments, indicating that the original CdS phase
has not completely dissolved (Table 6). The Cd–O distance in
the oxide component derived from EXAFS analysis (2.31 Å)
is typical of cadmium oxide phases and oxygen-coordinated
sorption complexes.16,30,31 However, the lack of backscattering
atoms beyond the first coordination shell suggests that the
Cd–O component is not a well crystallized solid.
The X-ray absorption spectrum for zinc of the reacted

sample likewise shows conversion of the original sulfide phase
to an oxide phase (Fig. 7b). In unreacted sample SC4-12, 78%
of zinc was coordinated by sulfur with local structure indicative
of poorly crystalline sphalerite (ZnS). In reacted sample SC4-
11, 25% of zinc remains coordinated in ZnS (distances are
identical to unreacted samples) and 75% of zinc is coordinated
by oxygen. As discussed previously, the original zinc oxide
component may be a composite of zinc substituted into detrital
silicate and oxide phases. These phases are probably recalci-
trant during reaction with seawater and would not dissolve
significantly. The absorption spectrum of the reacted sample
is therefore a composite of residual ZnS, the original oxide
component(s), and a new zinc oxide component. Least-squares
fits of the EXAFS spectrum of the reacted sample indicate a
first shell of oxygen atoms at an average distance of 2.03 Å and
metal backscatterers at 3.13 Å, similar to unreacted samples
(Table 6). There is also evidence for metal backscatterers at a
longer distance (3.39 Å) which is indicative of corner sharing of
metal octahedra or tetrahedra in (oxy)hydroxides and phyllo-
silicates. Owing to the complicated signal, backscattering in
the oxide component could not be fit with unique elements
beyond the coordinating shell of oxygen atoms. The inter-
atomic distances obtained from fits, however, are consistent
with zinc association with iron (oxy)hydroxide or phyllosilicate
phases in addition to the original zinc oxide components
(Fig. 7b).
In contrast to sulfide-associated metals, the XAS spectra

Table 7 Results of leaching experiments with sediment SC4-11 (runs A, B, C, and blank) as dissolved trace-metal concentrationsa (continued)

Blank

Sample ID
Time/
days

Flow
rate/g
day21 pH Cd (ppb) Cr (ppb) Cu (ppb) Mn (ppb) Ni (ppb) Pb (ppb) Zn (ppb)

B-1 0.47 a 8.01 0.621¡0.020 0.37¡0.51 2.56¡0.05 2.77¡0.51 3.70¡0.21 0.301¡0.010 20.1¡1.2
B-2 1.42 40.14 8.04 0.202¡0.003 0.32¡0.24 1.58¡ 1.98¡0.24 0.88¡0.02 0.124¡0.002 6.07¡0.15
B-3 2.35 41.16 8.02 0.185¡0.003 0.46¡0.13 1.09¡0.05 1.75¡0.13 0.67¡0.02 0.089¡0.002 4.51¡0.06
B-4 3.34 41.55 8 0.120¡0.002 0.22¡0.11 0.92¡0.05 1.77¡0.1 0.75¡0.02 0.077¡0.002 4.43¡0.10
B-5 4.41 42.10 8.02 0.141¡0.003 0.29¡0.17 0.86¡0.02 1.87¡0.173 0.68¡0.03 0.075¡0.002 3.78¡0.06
B-6 5.42 a 7.97 0.127¡0.005 0.27¡0.07 0.65¡0.04 1.77¡0.07 0.73¡0.04 0.047¡0.001 2.86¡0.07
B-7 6.39 42.87 7.96 0.103¡0.004 nd 0.52¡0.03 1.61¡0.11 0.55¡0.03 0.041¡0.001 2.74¡0.04
B-8 7.37 42.96 8.1 0.124¡0.004 0.22¡0.07 0.50¡0.03 1.73¡0.08 0.68¡0.02 0.062¡0.001 3.28¡0.04
B-9 11.36 44.27 7.96 0.103¡0.005 0.35¡0.05 0.44¡0.04 1.72¡0.05 0.91¡0.03 0.041¡0.001 2.45¡0.04
B-10 14.19 44.61 8 0.126¡0.002 0.32¡0.05 0.46¡0.03 1.54¡0.05 0.89¡0.03 0.039¡0.001 2.75¡0.02
B-11 18.43 45.35 7.94 0.110¡0.002 0.22¡0.06 0.47¡0.02 1.69¡0.06 0.88¡0.02 0.032¡0.001 2.43¡0.03
B-12 21.23 45.53 8 0.205¡0.007 0.94¡0.10 0.76¡0.04 2.50¡0.10 1.31¡0.03 0.043¡0.001 3.00¡0.04
B-13 25.72 46.33 7.9 0.097¡0.014 nd 0.46¡0.02 1.68¡0.28 0.96¡0.08 nd 1.24¡0.39
B-14 33.86 47.11 7.92 na 0.10¡0.05 0.37¡0.03 0.70¡0.05 0.94¡0.15 nd 2.07¡0.37
B-15 39.91 49.35 7.92 na 0.11¡0.05 0.37¡0.03 0.60¡0.05 na nd na
B-16 47.75 39.18 7.87 0.107¡0.017 nd¡0.09 0.37¡0.02 1.22¡0.09 na na¡0.000 na
B-17 54.75 41.97 7.89 0.107¡0.017 0.21¡0.11 0.43¡0.03 0.84¡0.11 0.98¡0.11 0.027¡0.002 1.52¡0.45
B-18 62.91 43.29 8.06 0.097¡0.014 0.20¡0.15 0.39¡0.02 1.20¡0.15 0.98¡0.09 nd na
B-19 76.90 46.33 8 0.113¡0.016 0.23¡0.13 0.44¡0.03 1.47¡0.13 1.07¡0.06 nd 3.47¡0.65
B-20 91.41 49.13 7.92 0.087¡0.002 0.20¡0.21 0.64¡0.02 1.26¡0.21 0.92¡0.01 0.013¡0.000 3.53¡0.11
a Flow rate not recorded, nd ~ not detected, na ~ not analyzed.
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of metals primarily associated with oxide phases show little
change after reaction with seawater. There is no evidence in
the chromium XAS data (XANES or EXAFS spectrum) for
oxidation to Cr(VI), although a small percentage (v5 atom%)
of surface-oxidized chromium cannot be ruled out based on the
bulk spectrum. The EXAFS spectrum of the reacted sample
most closely resembles that of the shallow sediment sample
SC4-1 (1.5 cm) and differs slightly from that of sample SC4-12
(34.5 cm) (Fig. 7c). Fits indicate that these differences are
related to the number of metal backscatterers beyond the first
coordination shell of oxygen atoms and not to large changes
in interatomic distances (Table 6). For lead and manganese,
comparison of XANES spectra also indicates no signficant
changes in local atomic coordination after reaction (Fig. 7d, e).
In the leached sediment sample, analysis of the iron EXAFS

spectrum indicates a reduction of 17% in the fraction of the
pyrite component compared to unreacted sediment SC4-12
(34.5 cm) based on integrated curve areas for fit pyrite and
oxide components (Fig. 7f, Table 6). It is likely that iron lost
from pyrite was resorbed or reprecipitated, probably as iron
(oxy)hydroxides, because at most 1% of the iron was lost
to solution (dissolved iron concentrations were below the
detection limit of 100 ng g21). Analyses of the XANES
spectrum of the leached sample indicates an small increase
in the amount of Fe(III). Interatomic distances of the oxide
component do not show any significant changes between
reacted and unreacted sediments because distances among
second-neighbor backscattering atoms in phyllosilicates and
iron (oxy)hydroxides overlap (in the range of 3.03–3.15 Å).
Backscattering amplitudes for second-neighbor atoms at
3.09–3.10 Å are higher in the leached sample compared to
unleached samples, perhaps indicative of the precipitation
of (oxy)hydroxides. At the pH of the leaching experiment
(pH ~ 7.9), we expect minimal dissolution of phyllosilicates
and quartz, precluding sources of aluminium and silica. The
mostly likely phase for iron reprecipitation is amorphous iron
(oxy)hydroxides.

4. Discussion

4.1 Trace metal geochemistry in estuarine sediments

The sediment cores represent a 60 year record of metal
contamination in the Seaplane Lagoon as determined by 137Cs,
26Ra, and 210Pb analyses of gravity cores collected at the same
location and time as our sediment cores.32 Comparison of
XANES and EXAFS spectra from suboxic sediments at 1.5 cm
depth and anoxic sediments at 34.5 cm (and deeper) suggest
that most of the important trace metal chemistry occurs near
the sediment–water interface and/or in the suboxic zone, where
metal contaminates are strongly partitioned to sulfide or oxide
phases. Once buried in the anoxic zone, the metal host phases
are stable for long periods of time. X-ray absorption spectra

Fig. 7 (a) Normalized EXAFS and corresponding radial structure
functions (uncorrected for phase shift of backscattering atoms) for
cadmium in unleached and leached sediment samples from core SC4 at
approximately the same depth (34 cm). Dashed red line is the non-
linear least-squares best fit; green line is the fit component corres-
ponding to CdS; blue line is the fit for a cadmium–oxygen component
that probably represents cadmium adsorption on iron (oxy)hydroxides
that form from pyrite oxidation. (b) Normalized EXAFS and corres-
ponding radial structure functions (uncorrected for phase shift of
backscattering atoms) for zinc in unleached and leached sediment
samples from core SC4. Dashed red line is the non-linear least-squares
best fit; green line is the fit component corresponding to sphalerite;
blue line is the fit for a zinc–oxygen component that probably
represents zinc adsorption on iron (oxy)hydroxides that form from

pyrite oxidation and zinc substitution in phyllosilicate or oxide
minerals noted previously. (c) Normalized EXAFS and corresponding
radial structure functions (uncorrected for phase shift of backscattering
atoms) for chromium in unleached and leached sediment samples from
core SC4. Dashed red line is the non-linear least-squares best fit. (d)
Normalized XANES spectra for lead in samples in unleached and
leached sediment from core SC4 compared to reference crystalline lead
carbonate (PbCO3). (e) Normalized XANES spectra for manganese in
samples in unleached and leached sediment from core SC4 compared to
a reference manganese phosphate (Fe, Mn(PO4)). (f) Normalized
EXAFS and corresponding radial structure functions (uncorrected for
phase shift of backscattering atoms) for iron in unleached and leached
sediment samples from core SC4. Dashed red line is the non-linear
least-squares best fit; green line is the fit component corresponding to
pyrite; blue line is the fit for an iron–oxygen component that probably
represents formation of an iron (oxy)hydroxide in addition to iron
substitution in phyllosilicate or oxide minerals discussed previously.
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of shallow and deep sediments show that poorly crystalline
cadmium and zinc sulfides form during biologically mediated
sulfate reduction in the suboxic zone and remain stable in
sediments with high HS2 concentrations for at least 50 to 60
years (to depths of 55 cm in deep cores). Thermodynamic
calculations show porewater saturation or supersaturation
with respect to both cadmium and zinc sulfide. Because of
the high dissolved HS2 concentrations, metal sulfide aqueous
complexes for several trace metals are stable and produce
higher aqueous concentrations of contaminants with depth.
Similarly, we infer that association of lead with carbonate or

phosphate phases, manganese with phosphate, and chromium
with oxides or phyllosilicates occurs within the water column,
the thin oxic sediment zone, or within the suboxic zone. X-ray
absorption data show that the local atomic structure around
these elements is independent of depth to 34.5 cm, suggesting
association with thermodynamically stable or recalcitrant
phases. Although the porewaters are saturated with respect
to galena (PbS), there is no evidence for lead associated with
sulfides in the XAS spectra. Lead may substitute for calcium in
either calcite or apatite, both of which are thermodynamically
stable based on porewater concentrations, or it may be present
as a sorbed complex. Likewise, XANES spectra show that
manganese is partially associated with a phosphate phase,
which may indicate substitution in apatite or formation of
MnHPO4(s) as porewaters are close to MnHPO4(s) saturation
(log SI ~ 21). As one might expect, chromium is present only
as Cr(III) in these highly reduced sediments. XAS data suggest
that dissolved anthropogenic chromium is removed from
porewater by either precipitation of chromite or by sorption
of chromium to phyllosilicates in the sediments. This is
consistent with laboratory observations of Cr(III) sorption to
micas and of the reduction of sorbed Cr(VI) by Fe(II) bearing
micas.33 The EXAFS data and the solution chemistry are also
consistent with chromium association with oxides such as
eskolaite, chromite or magnesiochromite, all of which are
supersaturated. It is doubtful that chromium, lead, and
manganese could be sorbed to iron (oxy)hydroxides below
the oxic zone (about 1–2 cm) because XANES analysis
indicates that available Fe(III) is not present below that
depth.29 Consequently, any chromium, lead, or manganese
sorbed to iron (oxy)hydroxides in the water column or the
oxic sediments would desorb and bond with oxides, phyllo-
silcates, carbonates, or phosphates below the zone of Fe(III)
reduction.
Detrital phyllosilicates and oxides comprise a recalcitrant

fraction of metals in these sediments. This conclusion is based
on direct spectroscopic evidence, metal concentration profiles,
and by comparison with metal concentrations in uncontami-
nated San Francisco Bay sediments.21 The authigenic source
of metals to San Francisco Bay sediments is the weathering
of the ultramafic Franciscan formation, which can be seen in
the iron and zinc oxide components. The iron oxide component
is best described as recalcitrant phyllosilicate and oxide phases,
probably as iron-bearing micas such as illite, muscovite,
chlorite or biotite and oxides such as magnetite, chromite, or
ilmenite18 that do not dissolve in the strongly reducing
sediments at neutral pH. It is likely that the zinc oxide fraction
and part of the chromium and manganese fractions are
associated with these unreactive phases. Comparison of the
metal concentrations in the oxide components and in the
surface sediments with metal concentrations in uncontami-
nated San Francisco Bay sediments further supports the
detrital source for metals. Hornberger et al.21 report back-
ground chromium concentrations of 125 to 150 mg g21, copper
concentrations of 20 to 40 mg g21, lead concentrations of
5 mg g21, nickel concentrations of 75 to 100 mg g21, and zinc
concentrations of 78 mg g21. These numbers compare well with
zinc concentrations associated with the zinc oxide component
estimated from EXAFS (50 to 130 mg g21), and surface

sediment chromium (200 mg g21), copper (100 mg g21), and
nickel (100 mg g21) concentrations. We cannot resolve the
anthropogenic and detrital chromium components in the
EXAFS, but the data are consistent with a partial detrital
component. Seaplane Lagoon nickel and manganese concen-
trations are fairly constant and do not show the anthropogenic
signature of increasing concentration with depth that is seen for
the other trace metals. Therefore, it is possible that nickel and
the non-phosphate manganese fraction are associated with
detrital phyllosilicates. Almost all of the lead in the sediments
is anthropogenic even in the surface sediments. Lead concen-
trations in the Seaplane Lagoon sediments range from 200 to
1400 mg g21, and are 40 to 280 times higher than in the
uncontaminated San Francisco Bay sediments.

4.2 Metal geochemistry in oxidized sediments

Oxidation of reduced estuarine sediments may occur during
dredging operations and during bioturbation or storm events at
the interface between the surface sediments and the overlying
water. In these environments, the oxidation of sulfides is an
important source of dissolved cadmium, zinc, and possibly
copper. However, their inherent hazard to biota is mitigated by
their sorption to or co-precipitation with oxide substrates. Of
these trace metals, cadmium is the most mobile because much
less of it is precipitated as an oxide. In our study, about 63% of
the CdS and 71% of the ZnS in the reduced sediments dissolved
during the experiment, but only 50% of the reacted cadmium
was taken up as an oxide, compared to 80% of the reacted zinc.
These numbers are based on comparison of EXAFS analyses of
the reduced and oxidized sediment, and on the net amount of
metal dissolved during the experiment (Fig. 6 and 7). One
explanation for the low uptake of cadmium compared to zinc
is much higher cadmium aqueous complexation. In seawater,
about 99% of the cadmium complexes with chloride and 1%
is free cadmium ion. By contrast, only 32% of the zinc
complexes with chloride and 58% is free zinc ion. This
comparison suggests that free metal ions have much higher
affinity for hydroxide surfaces than the metal complexes.
Minimal cadmium sorption may also result from competition
between zinc and cadmium. This phenomenon has been
observed in laboratory and field studies. In laboratory
experiments, cadmium sorption was suppressed by zinc and
lead sorption to iron oxyhydroxide.34,35 A field study of mine
drainage sediments showed that iron (oxy)hydroxide effectively
sorbs zinc.16,36 We assume that copper is present as a sulfide at
depth and sorbs to an oxide substrate when the sediment is
oxidized, because the dissolution of copper with time is similar
to the behavior of cadmium and zinc. All three elements exhibit
a rapid increase in the dissolution rate followed by a decrease in
the rate as they sorb to or co-precipitate with oxide substrates.
The most likely oxide substrate for cadmium and zinc uptake

is precipitated iron (oxy)hydroxide from the dissolution of
pyrite during the oxidation experiment. Pyrite is known to
dissolve in seawater. Morse37 report 20% oxidation of pyrite
in seawater in one day. In our EXAFS spectra, we detected
a 17% decrease in the pyrite fraction at the end of our oxida-
tion experiment. It is likely that the decrease in the pyrite
fraction was accompanied by the precipitation of an iron
(oxy)hydroxide because almost no dissolved iron was mea-
sured in the oxidation experiments. Another possible oxide-
substrate for cadmium and zinc uptake would be phyllosilicate
phases present in the sediments. It is doubtful that cadmium
and zinc co-precipitates with calcium carbonate because no
calcite was detected in the X-ray diffraction patterns, nor do
we have evidence from solution chemistry for calcite precipi-
tation during the oxidation experiment. It is also doubtful
that cadmium and zinc sorb to manganese (oxy)hydroxides
because the concentrations of cadmium (y40 mg g21) and
zinc (y210 mg g21) associated with the oxide component
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approximate the total manganese (y210 mg g21) in non-
phosphate component (y50–80%, which is probably associated
with phyllosilicates). The non-phosphate and phosphate man-
ganese components are stable in seawater. Although a small
percentage of manganese dissolved during the first few hours of
oxidation, no significant changes in the relative proportions
of these phases were observed in the XANES spectra.
Oxidation of reduced contaminated sediments will not yield

significant mobilization of chromium and lead because they
are associated with oxides, phyllosilicates, carbonates or
phosphates. Consequently, they are stable when exposed to
oxygen-rich seawater and exhibit little dissolution. Addition-
ally chromium retains its reduced oxidation state as Cr(III)
when reacted with seawater. Although there is little difference
in XAS spectra for the reduced and oxidized sediments, we
cannot rule out the possibility that chromium and lead desorb
and are taken up by the iron (oxy)hydroxides that forms as
pyrite oxidizes.

5. Conclusions

The fate of metal contaminants in urban harbor and coastal
sediments depends on the form of the stable solid phase that
hosts the metal as sediments are buried and reduced, which
cannot necessarily be predicted from the water chemistry. In
the suboxic and anoxic sediments with elevated HS2 concen-
trations, anthropogenic cadmium and zinc form disordered
sulfides, but anthropogenic lead and chromium are associated
with stable oxides. In addition to the anthropogenic metals,
some chromium, manganese, and zinc and all of the nickel
appear to be associated with recalcitrant detrital minerals, quite
possibly in iron-rich phyllosilicates and oxides. A fraction of
manganese is also present as a phosphate. Cadmium and zinc
pose the greatest hazard to biota during dredging, bioturba-
tion, or storm events because these sulfides are unstable and
will dissolve in oxygen-rich seawater. Dissolved cadmium and
zinc will partially sorb to available phyllosilicates or oxides, or
co-precipitate with iron (oxy)hydroxides that form as pyrite
oxidizes. Uptake of cadmium and zinc by oxides significantly
lowers their dissolved concentrations and reduces their overall
hazard to biota. Dredging of deeper sediments poses a minimal
hazard to biota for lead and chromium because they are
associated with stable carbonate, phosphate, phyllosilicates or
oxides. Additionally, chromium is present in its reduced from,
Cr(III), in the sediments and showed no evidence for oxidation
to Cr(VI) when reacted with seawater.
One significant observation from this study is that dominant

reactions that remove dissolved metals from solution occur
within the water column or the oxic and suboxic sediments,
with minimal metal transformation within the anoxic sedi-
ments over time (and depth). As iron (oxy)hydroxides and
sulfate are reduced at depths less than 5 cm, dissolved metals
are taken-up by stable solids below the sediment–water
interface. Once buried, the phases hosting the trace metals
are stable for a minimum of 60 years (age of the sediments).
Any cadmium and zinc associated with reactive iron (oxy)-
hydroxides in the water column or in the oxic sediments will
dissolve and re-precipitate as disordered sulfides with in
suboxic sediments. In contrast, any lead bonded to stable
phases such carbonate or phosphate in the oxygen-rich water
column or in oxic sediments does not dissolve and re-
precipitate as its thermodynamically stable sulfide phase
(galena, PbS).
This work was motivated by the US Navy’s concern that

sediments contaminated prior to the Clean Water Act (1975)
would contaminate the overlying water column as metals
dissolve when reduced sediments react with oxygen-rich water
during bioturbation, storm, dredging and other marina

activities. The results of this study can be used to help design
the impact of remediation strategies.
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