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Abstract

A survey of the interactions between phosphorus (P) species and the components of calcareous
soils shows that both surface reactions and precipitation take place, especially in the presence of
calcite and limestone. The principal products of these reactions are dicalcium phosphate and
octacalcium phosphate, which may interconvert after formation. The role of calcium carbonate in
P retention by calcareous soils is, however, significant only at relatively high P concentrations —
non-carbonate clays play a more important part at lower concentrations. In the presence of iron
oxide particles, occlusion of P frequently occurs in these bodies, especially with forms of the
element that are pedogenic in origin. Progressive mineralization and immobilization, often
biological in nature, are generally observed when P is added as a fertilizer.

Manure serves both as a source of subsurface P and an effective mobilizing agent. Blockage of P
sorption sites by organic acids, as well as complexation of exchangeable Al and Fe in the soil, are
potential causes of this mobilization. Swine and chicken manure are especially rich P sources, largely
due the practice of adding the element to the feed of nonruminants. Humic materials, both native
and added, appear to increase recovery of Olsen P. In the presence of metal cations, strong
complexes between inorganic P and humates are formed. The influence of humic soil amendments
on P mobility warrants further investigation.

Background The nature of P species in the shallow subsurface varies

The mobility of phosphorus (P) in the shallow subsurface
is a matter of critical importance and considerable com-
plexity. Its importance stems from the fact that P, an
essential nutrient for all plant and animal life, is often in
short supply. Agricultural fertilizers and other soil amend-
ments, such as mineral P fertilizers and animal manure,
provide P that is readily available to plants. The short-
term availability of P to crops is strongly influenced by
biochemical processes that affect organic matter, while its
long-term status is generally determined by geochemical
transformations.

widely with location, soil type, and management system.
In describing P movement in soils, workers often use
operational categorizations such as "dissolved reactive P",
"particulate unreactive P", etc. [1,2] The abundances of the
principal P compounds, expressed as percentages of total
P in the soil, are typically in the ranges: orthophosphates
60 - 80%; pyrophosphate 0.5 - 4%; P-monoesters 16 —
38%; and P-diesters 1.2 — 4% [3]. Both inorganic P (P;)
and organic P (P,) species interact extensively with soil
components and are subject to various chemical transfor-
mations that affect the retention of the element.
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Table I: Extraction of Inorganic P from Soils*

http://www.geochemicaltransactions.com/content/7/1/6

Extractant

P forms extracted

NaOH/NaCl

Na citrate-bicarbonate (CB)

Na citrate (C)

Na citrate-ascorbate (CA)

Na citrate-bicarbonate-dithionite (CBD)
Na acetate

HCI

Al- and Fe-bound

Labile pedogenic Ca-rich

Pedogenic Ca-phosphates

Occluded in poorly crystalline Fe-oxides
Occluded in crystalline Fe-oxides

Ca phosphates (excl. lithogenic apatite)
Lithogenic apatite

*adapted from ref. [23]

Depletion and oversupply are the two main challenges in
subsurface P management. Depletion is especially serious
when low input agriculture is practiced, involving land
clearing and continuous cultivation that reduce both P;
and P, in the soil [4]. Oversupply occurs when amend-
ments are added in excess of crop requirements, as may
happen when manure is applied to satisfy the nitrogen
requirements of crops [5,6]. Surplus P can be transported
in runoff after rainfall, irrigation and snowmelt, and may
contribute to eutrophication in water bodies.

The monitoring and management of environmental P is
predicated on accurate determinations of the element in
subsurface matrices. A thorough discussion of P analysis is
beyond the scope of this survey, but an excellent compila-
tion of analytical techniques has been published under
the auspices of the USDA-CREES [7]. Sample treatment
methodologies for a wide range of environmental sam-
ples have been reviewed by Worsfold et al. [8]. Briefly,
three techniques are widely used for environmental P
determination:

(i) The Murphy-Riley (MR) colorimetric method for inor-
ganic P analysis [9] (later improved by Harwood et al.
[10]), which uses ammonium molybdate, ascorbic acid,
and antimony potassium tartrate to develop a blue color
with P; (absorption at 880 nm) [11].

(ii) Inductively coupled plasma (ICP) spectroscopy, with
either optical emission (178.290 nm) [12] or mass spec-
trometric detection [13]. ICP generally yields higher P val-
ues than MR.

(iii) Potentiometry with the phosphate-sensitive cobalt
electrode, which was introduced by Xia et al. in 1995
[14,15], and has since proven to be a useful sensor for dis-
solved orthophosphates [16-18].

Chemical identification or organic P in environmental
samples is generally carried out by 31P NMR spectroscopy
[19,20]. Spectral assignments can be challenging, and
Turner et al. [21] have published extensive lists of P reso-

nance peaks that provide a guideline for the identification
of both P;and P,. Cade-Menun et al. note that the quanti-
tative use of 31P NMR spectra of soil and litter extracts in
solution requires careful sample treatment, control of
parameters, and knowledge of the species present in solu-
tion. They have published a comprehensive summary of
recommendations regarding the choice of extractant,
measurement of relaxation times, determination of Fe and
Mn content, use of appropriate delay times, and sample
temperature [22].

P in calcareous soils

Analyses of P retention and mobilization in natural cal-
careous environments have shown that both adsorption
and precipitation take place, although it is not always easy
to distinguish between the two mechanisms. Measure-
ment of P by any of the techniques mentioned above is
usually preceded by single or sequential extractions,
which often involve the solvent systems summarized in
Table 1.

Early work by Cole et al. on the interactions of P with cal-
cite surfaces [24] distinguished between initial adsorption
and subsequent precipitation of dicalcium phosphate
(DCP, CaHPO,). Alternatively, octacalcium phosphate
(OCP, Cag(HPO,),(OH),), may be formed [25], and
hydrolytic conversion from DCP to OCP is known to take
place [26]. This is especially noted when the initial DCP
formation is followed by an amorphous-to-crystalline
transition in the solid phase [27]. A cyclic process, in
which OCP disproportionates to reform DCP and stable
hydroxyapatite (HAp, Ca,,(PO,)s(OH),), has also been
found to occur [28]. The general consensus, affirmed by X-
ray diffraction [29], is that P growth on a calcite surface
involves both DCP and OCP, with the former dominat-
ing. Surface coverage, even at high P concentrations is typ-
ically no greater than 5%.

Early studies with limestone particles [30] suggest that the
solubility of P in suspensions of these is also controlled by
a DCP solid phase, despite some inconsistencies in solu-
bility product values [31]. The initial attachment involves
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Table 2: Quantities of P Extracted from Calcareous Marsh Soil*
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Types of P in soil (mg/kg)

P by sequential fractionation (mg/kg)

Total  Inorganic Organic Residual  Olsen P Py
839 61l 122 105 26 i 145

NaOH CB CcC CA CBD  NaOAc HCI
6 127 389 82 37 13 60

Pcb = CB extr; Pcbd = CBD extr.; ca = citrate-ascorbate; CB = citrate-bicarbonate; CBD = citrate-bicarbonate-dithionite; CC = citrate (2extr).

*adapted from ref. [46]

chemisorption of P onto the particles, producing a mate-
rial was first thought to be amorphous [27], but was later
shown to have a well defined chemical structure [32]. The
initial chemisorption, involving the formation of DCP, is
described by a Langmuir isotherm, while subsequent
sorption (including the formation of OCP) is of a low-
energy physical type [33]. The initial process is relatively
rapid, followed by a ca. 2-h induction period, and then
followed by precipitation [34]. P-sorption on all carbon-
ates strongly depends on surface characteristics, especially
surface area and zeta potential (17.7 - 25.3 mV). Interest-
ingly, pyrophosphate does not interfere with P sorption,
but does appear to inhibit precipitation.

It is clear that surface adsorption and precipitation are
major mechanisms of P retention in calcareous systems,
depressing its availability after fertilizer application.
Diverse results have been obtained regarding the relative
roles of carbonates and oxide clays in P retention in cal-
careous soils. Afif et al. [35] found that at high application
rates, P available to plants is negatively correlated to the
amount of lime in soil, but not to Fe, clay content, or CEC.
In contrast, other studies indicate that P retention
increases with the ratio of Fe oxides to CaCO,[36,37]. The
preponderance of the evidence [38-40] suggests that non-
carbonate clays provide most of the P adsorbing surfaces
in many calcareous soils, especially at low P concentra-
tions. It has even be reported that a 1.6% (w/w) coating of
Fe,O; on calcite increases the P sorption capacity 9-fold
[41]. As the P content of the soil increases, sorption by car-
bonates becomes more important.

In comparing the relative importance of surface reactions
and precipitation in P retention, Tunesi et al. [42] con-
cluded that in soils with a high reservoir of exchangeable
cations, precipitation is the predominant mechanism in
the reduction of available P. HAp is the most stable pre-
cipitated form of P in calcareous soils [43], while other
forms, including DCP dihydrate, OCP, and a metastable
phase of HAp [44], are somewhat more soluble.

A third retention mechanism for P, especially iron rich
soils, involves occlusion in Fe oxide particles. From data
obtained from single and sequential extractions with
ascorbate, citrate-ascorbate, bicarbonate, dithionite, and
oxalate, Torrent and coworkers [23,45] concluded that

poorly crystalline Fe oxides (primarily ferrihydrite) have a
distinct tendency to occlude P. Reduction of these parti-
cles in aquatic environments can lead to increased P con-
centrations. It has been shown that the relative quantities
of P occluded in both poorly and highly crystalline Fe
oxides is not necessarily related to the degree of P enrich-
ment in the soil, and that this form of P may in fact be
pedogenic in nature [46]. The typical breakdown of P for
such a case is shown in Table 2.

From a practical standpoint it is interesting to consider
how P interactions in calcareous soils compare to those in
limed acid soils. In cases where substantial amounts of
metal phosphates have accumulated in soils of both types
- due to pedogenesis and/or fertilizer application in
excess of plant uptake - calcareous soils are found to con-
tain less surface P than limed acid soils. Ca phosphates
predominate in the former, and Al and Fe phosphates in
the latter. Overall, P availability to plants is greater in
limed acid soils [47].

In unamended soils, especially those not having received
manure, P leaching is generally a relatively minor prob-
lem compared to erosive losses of the element. There is,
however, strong evidence that the extent of subsurface P
loss is closely related to the degree of phosphorus satura-
tion (DPS) of the soil. In terms of Olsen P, it has been sug-
gested that below 60 mg P kg, P, is sorbed strongly, while
at higher concentrations sorption energy is much lower
[48], which would promote P leaching. It is generally
found that at DPS levels below 20% P leaching is rather
insignificant, but increases rapidly above this value
[49,50]. When manure is added to soils, however, the sit-
uation changes radically, and P is mobilized and subject
to both surface and subsurface losses [51,52]. This is fur-
ther discussed below.

Influence of organic matter

Both added manure or litter and native organic matter
(humic materials) have significant effects on subsurface P
retention. Manure not only affects sorption and precipita-
tion of P, but often contains significant amounts of the
element, which is thereby - deliberately or incidentally -
added to the land. Humic materials, the breakdown prod-
ucts of the total biota in the environment, generally are
not a major source of P, but they do have a mobilizing
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Table 3: P in Manures**

Dairy manure Poultry manure Swine slurry

total P (mg/kg) 3,990 28,650 32,950
% inorganic P 63 84 91
% organic P 25 14 8
% residual P 12 2 |
%P leached in rainfall* 58 21 15

* 5 consecutive simulated rainfall events of 70 mm/h, 30 min each.
**adapted from ref. [67]

effect on it in the subsurface. The use of extrinsic humates,
especially leonardite humic acid, for soil improvement
has experienced an upswing in recent years [53].

Manure

The application of manure is widely practiced to increase
the productivity of soils that contain inadequate levels of
organic carbon. The effects of manure on P availability in
various soils has been widely studied, and the general con-
clusion has been that it is a source of P; interacts with soil
components in a manner that increases P recovery by
crops; and enhances the effectiveness of inorganic P ferti-
lizer. P added from manure and other sources, however,
tends to become less available to plants with the passing
of time [54]. As mentioned above [5], manure application
guidelines are frequently based on the N requirements of
crops, and P is therefore often oversupplied and liable to
either accumulate or be removed by surface or subsurface
transport [55]. As regards the eventual status of fertilizer P
in soil, it is interesting to note that manure and mineral
(KH,PO,) fertilizer appear to contribute to different P
pools [56]. The latter is efficient at increasing CaCl,
extractable P and Mehlich-3 P, while manure (especially
chicken manure) has a greater effect on modified Morgan
P, as well as other types of P.

Alkaline soils subject to long-term manure amendments
have been shown to accumulate substantial quantities of
P, with 50-66% in plant available forms [5]. Irrigated
plots receiving high (>60 Mg ha!) annual manure appli-
cations are considered to pose a risk of ground water con-
tamination, as the total P concentration increases with
soil depth. The ability of acid soils to retain added P after
long-term manuring, is generally low. It has been reported
that manure applications have a greater effect on the
retention of P; than the retention of P, [57].

The affinity constants and sorption capacities of soils for
P are reduced by organic amendments, especially manure.
This can be due to competition for P fixation sites by
organic acids, and/or the complexing of exchangeable Al
and Fe by components of manure [58-60]. The latter may,
at least partially, be ascribed to the release of sulfates and
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fluorides by the manure, both of which are strong com-
plexing agents for Al and Fe.

Parallels may be drawn between the P mobilizing effects
of manure and humic materials (vide infra) on the one
hand, and root exudates on the other hand. It is well
established that cover crops such as white lupin (Lupin
albus L.) form cluster roots in response to P deficiency, and
that these root systems are efficient producers of succi-
nate, citrate, and malate [61,62]. Release of these organic
anions into the rhizosphere enhances the release of spar-
ingly soluble P, not only from the acid soluble pool, but
also from more stable residual P fractions. Little informa-
tion is presently available on the chemical nature of anal-
ogous chemical species in manure and humic
amendments that may be responsible for their P mobiliz-
ing qualities.

On a seasonal basis, a decrease in soluble P during the
growing season is often observed in calcareous soils, fol-
lowed by an increase in the noncropping season [63].
Vivekanandan and Fixen [64] have reported that large-
scale manure applications to a silty clay loam results in a
linear increase in available P (Bray P1), up to a (presuma-
bly) soil dependent limit. P stabilization eventually
occurs through apatite precipitation. In acidic soils, high
application rates of manure also lead to P mobilization,
indicating that organic materials with high P content may
substitute for CaCOj; as a soil amendment to decrease the
P sorption capacity and increase the pH [60,65]. Interest-
ingly, it has recently been reported that dissolved organic
matter does not inhibit P sorption in highly weathered
acidic soils [66].

Types of manure

The type of manure used for soil amendment is an impor-
tant variable with respect to the amount of P contributed
to the soil. Sharpley and Moyer [67] have published a
detailed account on the P content of dairy, poultry, and
swine manures, both raw and composted. In all cases
listed, it was found that P, constitutes the vast majority of
P determined. Some of the results are summarized in
Table 3, which also includes data on P mobilized by sim-
ulated rainfall.

All commercial animal production can cause serious
manure disposal problems, which have been exacerbated
by extensive consolidation in recent years. The vast quan-
tities of manure [68] produced by centralized pig farming,
for instance, are a case in point. The relative amount of P
contained in this manure is large, because pigs (and other
nonruminants) lack the phytase [69] enzymatic system
that releases P from phytic acid stored in cereals. Animal
feed producers and farmers therefore often add P; to the
feed, which improves animal health but also increases the
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P content of manure. Other approaches in supplying P to
pigs include the addition of phytase to the feed, and even
the development of phytase transgenic pigs [70] - which,
to date, do not appear to have found commercial applica-
tion. Also, low-phytate corn [71] and barley [72] mutants,
usable as feed, have been isolated. Leytem et al. [73] found
that pigs that were fed these grains showed evidence of
hind-gut hydrolysis of phytic acid, possibly by intestinal
microflora.

Pig slurry, which is 5-10% solid matter, typically contains
1-2% (dry w/w) P. The bulk of this (75-85%) is P;, con-
sisting of CaHPO,-2H,0 and apatites of low solubility
[74]. Short term (24 h) adsorption experiments in sandy
soils have shown that the average sorption capacity is
about 10 kg P;/ha- cm depth, so that for every cm of soil a
total of 8-12 tons/ha of slurry with ca. 8% solid content
can be applied before saturation sets in and mobility
increases. Gerritse notes [74], however, that saturation is
temporary and is followed by a phase transition (mineral-
ization) that leads to long term immobilization.

The chemical identification of P species in manure is of
considerable practical importance, since the exact nature
of P is a major determinant in the subsurface retention of
the element after manure application. Work by Crouse et
al. [75] has shown that the mineralization of P, by phos-
phatase enzymes, especially phosphomonoesterase, can
proceed over periods extending to 20 weeks in soils
amended with chicken manure. The orthophosphate con-
tent of the soils increases during mineralization, while P
decreases. The sorption of P, (nucleotides and inositol
hexaphosphate, IHP) is positively correlated with both
organic matter and Fe and Al content of the soil [76].
Especially IHP is strongly retained.

The physico-chemical characteristics of manure differ
from those of soil, and the use of sequential extractions in
manure analysis needs to be carefully evaluated. [77] A
major portion of P in manure is soluble in weak extract-
ants such as H,0 and NaHCOj, while much of the soil P
requires NaOH and HCI. This is related to the fact that
soils contain ca. 15 times as much Al, and 10 times as
much Fe as manure, while manure tends to have higher
Ca and Mg contents. Rapid evaluation of plant-available P
clearly is a desirable feature of subsurface analysis, and He
and coworkers have introduced a shortcut in the assess-
ment of contributions from manure amendments. They
suggest that a single P extraction from dairy manure with
a 100 mM acetate buffer at pH 5.0 equals the combined
H,0O, NaHCO;, and NaOH extractions [78].

Turner and Leytem caution that the presence of organic P
in the HCI extract of the Hedley fractionation [79] proce-
dure is commonly overlooked, resulting in under-report-
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ing [80]. They found phytic acid to be present in HCI
extracts of broiler litter and swine manure, indicating that
this relatively immobile compound enters the environ-
ment from these sources. More mobile P, species in
manure, such as phospholipids and simple phosphate
monoesters, can, despite their relatively low abundance,
become a major P component in runoff [81]. Turner and
Leytem also introduced a two-step fractionation proce-
dure for manure P [80], involving 0.5 M NaHCO; for
readily soluble P, followed by 0.5 M NaOH/50 mM EDTA
for more recalcitrant P. Recoveries were superior to those
obtained with Hedley and NaHCO;/HCI procedures.

P;in the H,O extractable fraction of dairy manure is corre-
lated with total P (P, is not [78]), while the opposite is
true for the NaHCO; extractable fraction. About half of
the P, in the H,O fraction is enzymatically hydrolysable -
mainly as phytate in pig manure [82]. In contrast, a major
portion of P, in the NaHCO; fraction is not hydrolysable
by either wheat phytase, alkaline phosphatase, nuclease
P1, or nucleotide pyrophosphatase. This indicates that P
extracted from manure with NaHCO; is not especially
labile.

Manure treatment

Chicken manure and swine slurry are apt to provide read-
ily mobile (water soluble) P to soil, which can lead to run-
off and eutrophication problems. For this reason, some
effort has been expended at reducing the mobility of P in
these types of manure and litter. Chemical additives that
have been used for this purpose [83,84], include lime, fer-
ric chloride, ferrous sulfate, and alum (AL,(SO,);- 14H,0
or KAI(SO,), - 12H,0). Of these, alum has proven to be
most effective, with the added benefit that it also prevents
the loss of ammonia [85,86] and water soluble metals
from manure amended soils [87,88].

Al-associated P accounts for some 40% of total P in alum
amended materials, with about 20% of this being drawn
from Ca-phosphate phases. This decreases by about half
when alum is added to poultry litter. Hunger et al. [89]
have used 3!P NMR to elucidate the nature of the immo-
bilized P species. This proved to be a difficult task, involv-
ing many unresolvable P;and P, species. It was noted that
no crystalline aluminum phosphate species were present.

Humic materials

Humic and fulvic acids comprise a wide variety of organic
materials that are present in all agricultural soils. Their
effects on plant growth and nutrition are well docu-
mented, [90,91] and they can be applied to improve soil
structure and increase crop yields. Reports on the influ-
ence of humic materials on P retention and release have
largely focused on the mineral components of the soils
studied. Recent work indicates that the occurrence of Al
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and Fe has a significant effect on the P sorption capacity,
despite the presence of large amounts of organic matter
[92]. Earlier, it had been shown that P decreases the sorp-
tion of organic C to acid mineral soils, suggesting a ligand
exchange process at the surface [93,94]. As regards the
reverse, i.e. the release of P under the influence of dis-
solved humic materials, Delgado et al. [95] have pub-
lished one of the few accounts dealing with this issue.
They found that application of humics to the soil
increases the recovery of Olsen P in all soils tested, except
in those with very high Na content.

A recent investigation indicates that strong interactions
between P; and humic materials is predicated on the pres-
ence of metal ions that act as cationic "anchors", allowing
anionic humates and phosphates to associate [96]. Stabil-
ity constants of humate-metal-P complexes tend to be
high, with log K values in the range 4.87-5.92 (Zn- and
Mg-anchor, respectively).

Concluding remarks

Much has been learned about P mobility in calcareous
media over the last five decades, but some gaps in under-
standing remain. Many of these occur at the molecular
level of P interaction with subsurface species, including
the detailed mechanism of P desorption under the influ-
ence of organic species. The role of humic materials in P
mobilization is another area of research that has been
given relatively little attention and is a potentially fruitful
area of study. The use of humates as soil amendments
presents an especially interesting case. The practice is gain-
ing popularity - as borne out by the existence of more
than 70 purveyors of these "nonconventional soil addi-
tives" in the U.S. alone [53] - but nothing is known about
its environmental consequences.
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