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METHODOLOGY

Improved volume variable cluster model 
method for crystal‑lattice optimization: effect 
on isotope fractionation factor
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Abstract 

The isotopic fractionation factor and element partition coefficient can be calculated only after the geometric optimi‑
zation of the molecular clusters is completed. Optimization directly affects the accuracy of some parameters, such as 
the average bond length, molecular volume, harmonic vibrational frequency, and other thermodynamic parameters. 
Here, we used the improved volume variable cluster model (VVCM) method to optimize the molecular clusters of a 
typical oxide, quartz. We documented the average bond length and relative volume change. Finally, we extracted the 
harmonic vibrational frequencies and calculated the equilibrium fractionation factor of the silicon and oxygen 
isotopes. Given its performance in geometrical optimization and isotope fractionation factor calculation, we further 
applied the improved VVCM method to calculate isotope equilibrium fractionation factors of Cd and Zn between  
the hydroxide (Zn–Al layered double hydroxide), carbonate (cadmium-containing calcite) and their aqueous  
solutions under superficial conditions. We summarized a detailed procedure and used it to re-evaluate published 
theoretical results for cadmium-containing hydroxyapatite, emphasizing the relative volume change for all clusters 
and confirming the optimal point charge arrangement (PCA). The results showed that the average bond length and 
isotope fractionation factor are consistent with those published in previous studies, and the relative volume changes 
are considerably lower than the results calculated using the periodic boundary method. Specifically, the average  
Si–O bond length of quartz was 1.63 Å, and the relative volume change of quartz centered on silicon atoms 
was  − 0.39%. The average Zn–O bond length in the Zn–Al-layered double hydroxide was 2.10 Å, with a relative 
volume change of 1.96%. Cadmium-containing calcite had an average Cd–O bond length of 2.28 Å, with a relative 
volume change of 0.45%. At 298 K, the equilibrium fractionation factors between quartz, Zn–Al-layered double 
hydroxide, cadmium-containing calcite, and their corresponding aqueous solutions were �30/28SiQtz-H4SiO4

= 2.20‰ , 
�18/16OQtz−(H2O)n = 36.05‰ , �66/64Zn

Zn−Al LDH-Zn(H2O)
2+
n

= 1.12‰ and �114/110Cd
(Cd–Cal)-Cd(H2O)

2+
n

= −0.26‰ 
respectively. These results strongly support the reliability of the improved VVCM method for geometric optimization 
of molecular clusters.

Keywords:  Molecular cluster, VVCM, Geometric optimization, Relative volume change, Isotopic equilibrium 
fractionation factor
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Introduction
In nature, the isotopic composition of an element varies 
with rock type, source, and age, especially those deter-
mined by high-resolution mass spectroscopy since the 
2000s. This has considerably expanded the usefulness of 
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isotopic tools, which have been widely used to study pro-
cesses occurring in terrestrial, atmospheric, and aquatic 
environments [1–7]. Specifically, the composition of iso-
topes can be used for geological temperature measure-
ment and geological dating [8–11], as well as to determine 
the genesis of ore deposits [12, 13]. Moreover, several 
important geological events are reflected by the sudden 
change in isotope composition, such as the largest mass 
extinction at the Permian–Triassic boundary, revealed by 
seawater δ7Li and δ114Cd content [14, 15]. Therefore, iso-
topes also play an important role in tracing paleoclimatic 
variations [16]. Although isotopes have been widely stud-
ied in various fields of geochemistry, the magnitude of 
isotope fractionation is unknown. This has substantially 
hindered the development of stable isotope geochemis-
try. However, the magnitude of isotope fractionation is a 
key parameter for establishing an isotope evolution model. 
At present, three methods are used to obtain the isotope 
equilibrium fractionation factor: experimental determi-
nation, empirical estimation, and theoretical calculation. 
However, laboratory experiments are often conducted 
under conditions that deviate from natural conditions, 
such as elevated background concentrations, high temper-
atures, and short durations. Hence, extrapolation from the 
laboratory-derived results to geological settings requires 
further evaluation. The accuracy of an empirical estima-
tion is dependent on the parameters adopted in the calcu-
lations, which may result in a large error in the obtained 
fractionation factor. Therefore, theoretical calculations 
have become a useful tool for obtaining precise isotope 
equilibrium fractionation factors. With the rapid increase 
in storage and computing efficiency in recent decades, 
supercomputers are now being used to model increasingly 
large systems of up to tens of thousands of atoms. Com-
putational simulations, particularly quantum chemical 
simulations, consider various chemical interactions, mim-
icking key reaction steps. The accuracy of the calculated 
results is equivalent to that of the experimental analyses. 
Simulations have proven particularly useful, especially 
when sampling and/or experimental constraints are dif-
ficult to obtain. Among the various simulation methods, 
first-principles calculations based on density functional 
theory (DFT) have been widely used to calculate isotopic 
fractionation factors, element partition coefficients, and 
vibrational spectra. However, obtaining stable geometri-
cal configurations is a prerequisite for calculating these 
parameters. The harmonic vibrational frequency required 
to calculate the isotopic fractionation factor is a second-
order partial derivative of the electronic energy of the sys-
tem with respect to its atomic coordinates.

Research on solid earth science involves the geo-
metric optimization of solid structures. The periodic 
boundary method is the most commonly used method 

for simulating solids. Mineral cells are used to construct 
periodic systems. In general, supercells are required to 
ensure that the constructed system is comparable to the 
real mineral lattice, but the total number of unit cells is 
limited by computational power. In addition, improper 
handling of atoms at the boundary of the supercells 
may considerably affect the accuracy of the calculated 
results. Given the shortcomings of the periodic bound-
ary method, Rustad and Dixon [17], Rustad and Yin 
[18], and Rustad et al. [19, 20] introduced an embedded 
cluster model with a Pauling bond strength (PBS)-con-
serving termination of the atoms in their rigid shell. In 
this model, a large molecular cluster with three shells 
is employed to represent the minerals. A small core 
and a second shell are optimized at high and low lev-
els of theory and basis sets, respectively. The third shell 
is fixed at the measured lattice positions. Chemical 
bonds entering the third shell are clipped and replaced 
by “Pauling bond strength-conserving quasi-atoms” 
along the clipped bonds, which make the core charge 
of each quasi-atom equal to the Pauling bond valence, 
that is, the charge of the removed cation divided by 
its coordination number. The distance between the 
quasi-atom and the third shell is maintained at 1  Å. 
Finally, the frequency calculations are performed only 
for the small core. As an alternative, the volume vari-
able cluster model (VVCM) method was proposed by 
Liu [21], which was developed during the optimization 
of silicates, carbonates, oxides, hydroxides, and sulfides 
[22–28]. In contrast to the embedded cluster model, in 
the VVCM model all atoms of the cluster are geometri-
cally optimized, and all or partial atoms are involved in 
the calculations of the vibrational frequency according 
to the computational cost. The total number of back-
ground point charges amounts to several hundreds, 
which is much higher than the number of quasi-atoms 
in the embedded cluster model. This ensures the cov-
erage of point charges on the entire molecular cluster. 
Additionally, the positions of the background point 
charges are adjusted during the construction of the ini-
tial molecular clusters. More importantly, geometric 
optimization and harmonic vibrational frequency cal-
culations can be performed for both periodic systems 
(minerals) and nonperiodic systems (solutions) with 
identical exchange–correlation functionals and basis 
sets. Although the main two limitations of the molecu-
lar cluster method are the same as those of the periodic 
boundary method (the size of the system and the treat-
ment of atoms on the boundary) and its representation 
of the periodic mineral lattice is not as accurate as that 
of the periodic boundary method, it is able to precisely 
treat the local configuration around the atom of inter-
est, which is the dominant factor controlling isotope 
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fractionation. In recent years, static quantum chem-
istry calculations based on molecular clusters have 
accurately calculated the stable isotope equilibrium 
fractionation factors [22–32]. The calculated results 
are in agreement with previous experimental and theo-
retical calculations. However, the critical question is to 
treat the local configuration around the atom of inter-
est. In previous studies, a detailed procedure to obtain 
an optimized local configuration was absent. In addi-
tion, evaluation proxies for the optimized local config-
uration are not well-established. The energy of a solid 
(E) is a function of the molecular volume (V) [33], total 
number of atoms, and interactions among the atoms. 
Additionally, the relationship between energy and vol-
ume is linear and/or nonlinear [34]. For example, the 
nonlinear four-parameter Vinet equation of state [35, 
36] can be expressed as follows:

where the fitting parameter a = E0 + 4B0V0/(B0
’-1)2, 

V0, B0, and B’
0 represent the equilibrium volume, bulk 

modulus, and its first derivative with respect to pres-
sure, respectively; and ΔV is the deviation from the 
equilibrium volume.

Given the role of molecular volume in the energy of 
the solid, the expansion or contraction of molecular 
clusters will influence the accuracy of harmonic vibra-
tional frequencies and the isotope fractionation factor. 
However, the degree of expansion or contraction of 
molecular clusters was not considered in the previous 
molecular cluster modeling method.

In this study, we chose the typical oxide quartz (Qtz) 
present on the Earth’s surface [37, 38] as an example. 
By geometrically optimizing the Qtz molecular cluster, 
extracting its parameters (converged electronic energy, 
average bond length, and relative volume change), and 
calculating the equilibrium oxygen and silicon isotopic 
fractionation factors between molecular clusters and 
the aqueous solution, we aimed to verify the useful-
ness of the improved VVCM method after comparison 
of methods developed in previous studies. Based on the 
performance of the improved VVCM method for Qtz, 
we extended the method to the calculation of other 
nontraditional stable isotopes (Zn and/or Cd) between 
layered double hydroxide (Zn–Al LDH), carbonate 
(Cd–containing calcite, Cd–Cal), and their correspond-
ing solutions. After rechecking previous theoretical 
results for cadmium-containing hydroxyapatite (Cd–
HAp), emphasizing the relative volume change for 
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all clusters, and confirming the optimal point charge 
arrangement (PCA), we constructed a detailed proce-
dure to implement the improved VVCM method.

Theory and methods
To obtain an optimal geometric structure, we system-
atically used the optimization process based on the 
improved VVCM method, as shown in Fig. 1.

Constructing molecular cluster and adding background 
point charges
We reconstructed the three-dimensional crystal lattices 
of the minerals from X-ray single-crystal diffraction or 
neutron diffraction data obtained from previous stud-
ies [39–43]. The N–N–N principle must be followed 
when cutting molecular clusters. This requires the atoms 
(nearest neighbor) to form chemical bonds with the cen-

tral atom (atom of interest), and the atoms (the second 
neighbor atom) forming chemical bonds with the nearest 
neighbor must be retained. In specific cases, the size of 
the molecular clusters depends on the computational cost 
and accuracy. Generally, the outermost layer of a cluster 
is composed of anions or anionic groups, while the metal 
ions and/or protons connected to these anions or ani-
onic groups are deleted. The hanging bonds are typically 
saturated with positive point charges to fix the outermost 
atoms and to simulate the electron-neutral environment 
of the crystal. Existence of free interlayer anions makes 
LDH different from others. The general formula of LDH 
is [M2+

1−x M3+
x (OH)2]x+(An−)x/n·mH2O, where M2+ 

and M3+ represent divalent and trivalent metal cations, 
respectively; An− is an interlayer anion including CO3

2−, 
Cl−, SO4

2−, NO3
−; x represents the molar ratio M3+/

(M2+  + M3+); and m is the number of water molecules 
[44, 45]. In nature, the M2+/M3+ molar ratio is usually 
two [46]. Therefore, we focused on a typical Zn-contain-
ing LDH with a Zn:Al ratio of two. We constructed two 
kinds of molecular clusters for LDH without and with 
interlayer anions.

Oxygen atom can strongly attract the electron of hydro-
gen atom due to its strong electronegativity. It means that 
each hydrogen atom of a water molecule can accept a 
non-shared electron pair of the oxygen atom. Meanwhile, 
oxygen atom can contribute its two non-shared elec-
tron pairs to two hydrogen atoms. Therefore, water mol-
ecules can form 4 H bonds with each other in solution 
[47], which constructs a tetrahedron structure found in 
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ice crystals (Additional file 1: Figure S1). Inspired by this 
observation, we used point charges and connected chem-
ical bonds to encompass the terminal anions. Different 
terminal anions have various arrangements of positive 
point charges. In a previous study, three PCAs were pro-
posed [25], and for the terminated oxygen (η1-O) capped 
by five positive point charges (5 ×), two positive point 
charges were used as two wings (2 ×) distributed on the 
bridge oxygen (µ2-O) or the terminated hydroxyl (η1-
OH), and one positive point charge was set to the apex 
(1 ×) of the bridge oxygen or hydroxyl (µ3-O or µ2-OH) 
(Fig. 2). Considering η1-O as the predominant anion on 
the surface of the cluster, we added point charges in four 
different ways to evaluate their effect on the theoretical 
results. The one was to add one point charge in the direc-
tion of the deleted atoms [17–20]. In other three ways, 
three, four, and five point charges were added to η1-O, 

respectively. However, point charges were not fixed at the 
directions of chipped bonds. Alternatively, these point 
charges were averagely distributed in the space surround-
ing the η1-O. Obviously, η1-O is more tightly capped by 
five point charges than by three or four point charges 
(Additional file 1: Figure S1). Furthermore, we performed 
geometrical optimizations for the Qtz cluster considering 
1 ×, 3 × , and 5 × PCAs (Table  1). Although the average 
Si–O bond length optimized in three PCAs was slightly 
larger than that in the experimental data (1.61 Å [39] and 
1.62  Å [48]), the more accurate relative volume change 
(ΔV/V0) and �30/28SiQtz - H4SiO4 indicated that 5 × was 
the best PCA for η1-O. Similarly, we safely capped µ2-O 
and µ3-O with two and one point charges, respectively, 
according to a previous study [25].

Before optimizing the configuration, we set the 
charge quantity and distance of the point charges of the 

Fig. 1  Flow chart of the improved VVCM method
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outermost oxygen atoms. The quantity of charge was 
equal to the amount of charge provided by the outer-
most anions or anionic groups of the cluster. Specifi-
cally, the total amount of point charge on each terminal 
anion was equal to the sum of the contributions of all 
“cut” metal ions and/or protons. The distance between 
the point charge and the outermost oxygen atom was set 
empirically. Upon adjustment of the distance between 
the point charge and outermost oxygen atoms, the elec-
tronic energy of the system also changed, and each atom 
of the inner part of the cluster relaxed under its three 
freedoms (X, Y, and Z dimensions). When the inner 
atoms amounted to N, 3 N freedoms were observed. The 
outermost layers of the Qtz clusters centered on silicon 
or oxygen were all η1-O (Fig.  2). In the Qtz cluster, the 
total electrical charge of the point charges on each η1-O 
was equal to 1/4 of that of the removed Si4+, that is, + 1 
(Table 2). Therefore, the partial electrical charge of each 
point charge was set to + 1/5. In the Zn–Al LDH cluster, 
the two types of PCAs were 5 × and 1 × (Fig. 2). The total 
amount of charge on η1-O was equal to the total amount 

of charge contributed by the removed Zn2+, Al3+, and H 
atoms. Specifically, the total amount of charge was the 
summation of the charge contributed by one hexa-coor-
dinated Zn2+ (+ 2/6), one hexa-coordinated Al3+ (+ 3/6), 
and one H atom (+ 1). Thus, the total amount of charge 
on η1-O was + 11/6. We set the electric quantity of each 
point charge to + 11/30. The total charge on µ2-OH was 
equal to the removed charge of one hexa-coordinated 
Al3+ (+ 3/6). The electric quantity of each point charge 
was + 1/2. Furthermore, for Cd–Cal, the two PCA modes 
were 5 × and 2 × (Fig.  2). The total charge on η1-O was 
equal to the total amount of charge of the two removed 
hexa-coordinated Ca2+ (2/6 + 2/6), so the amount of 
charge divided by each point charge was + (2/6 + 2/6)/5. 
The total amount of charge on μ2-O was + 2/6, and the 
electric quantity of each point charge was + (2/6)/2.

The configuration of Cd-containing hydroxyapatite 
is further complicated by the simultaneous existence of 
η1-O, µ2-O, and µ3-O in its outermost layer (Fig. 2). Two 
ways can be used to set the electric quantity for each point 
charge in the 5 × mode. One fraction of η1-O obtains 
the total charge of two nine-coordinated Ca2+ and one 
seven-coordinated Ca2+ (2 × 2/9 + 2/7), setting the elec-
tric quantity of each point charge to + (2 × 2/9 + 2/7)/5. 
The other fraction of η1-O obtains the total charge 
(2 × 2/7 + 2/9) of two seven-coordinated Ca2+ and one 
nine-coordinated Ca2+, with the electric quantity of each 
point charge set to + (2 × 2/7 + 2/9)/5. The three ways 
to set the electric quantity for each point charge when 
adding two points of charge are as follows: (1) the µ2-O 

Fig. 2  Schematic diagram of PCA

Table 1  Comparison of theoretical results for three optimal PCAs

Optimal PCA (pm) Si–O bond 
length (Å)

ΔV/V0 (%) �
30/28SiQtz - H4SiO4

(298 K, ‰)

1 × 94 1.630 2.03 0.78

3 × 111 1.629 1.00 1.76

5 × 116 1.625  − 0.39 2.02
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obtains the total charge of two nine-coordinated Ca2+ 
(2/9 + 2/9) and the electric quantity of each point is set 
to + (2/9 + 2/9)/2; (2) the µ2-O obtains the total charge of 
two seven-coordinated Ca2+ (2/7 + 2/7) and the electric 
quantity of each point is set to + (2/7 + 2/7)/2; and (3) the 
µ2-O obtains a total charge of a seven-coordinated Ca2+ 
and a nine-coordinated Ca2+ (2/7 + 2/9) and the electric 
quantity of each point is set to + (2/7 + 2/9)/2. The two 
types of electric quantities for each point charge in the 
1 × modes are as follows: the electric quantity of each 
point charge on μ3-O is set to + 2/7 when the seven-coor-
dinated Ca2+ is removed; and the point charge on μ3-O 
obtains a charge of + 2/9 when the nine-coordinated 
Ca2+ is removed.

Molecular cluster optimization
We systematically adjusted the distance between the 
point charge and outermost oxygen atom to change the 
distribution of the background charge and to change the 
molecular cluster volume and geometry.

Qtz
Only one PCA exists in the Qtz molecular cluster, that 
is, 5 × PCA. Here, we considered the Qtz molecular clus-
ter centered on a silicon atom as an example to provide 
a detailed description. According to previous studies, 
the range of distances between the 5 × point charge and 
η1-O (d5×) is approximately 100–120 pm [22]. Thus, we 
adjusted d5× to 100 pm. Each time, we placed the point 
charge with two sets of distances, with a difference of 
only 1 pm, for instance, 100 and 101 pm. We determined 
the direction of further distance adjustment by deter-
mining the lower electronic energy (corresponding to 
101 pm) in the two groups. Therefore, increasing the dis-
tance between the 5 × point charge and η1-O decreased 
the electronic energy of the cluster (Fig. 3). Subsequently, 
we set the point charge at two other distances (119 and 
120 pm) and compared their electronic energies. Assum-
ing that the electronic energy value of each configura-
tion obeys a parabolic (concave upward) distribution, we 
determined that the point charge distance of the lowest 
electronic energy configuration should be between 101 
and 119 pm. By further comparing the electronic energies 
of the system at medium distances of 111 and 112 pm, we 
further constrained the position of the parabola vertex 
within a narrower range (112–119 pm). Finally, we geo-
metrically optimized all configurations within a small 
range to determine the optimal point charge distance 
corresponding to the lowest electronic energy value.

Zn–Al LDH, Cd–Cal, and Cd–HAp
We used the optimal point charge distance search 
method, similar to that used for Qtz, for evaluating the 

Zn–Al LDH, Cd–Cal, and Cd–HAp molecular clusters. 
In the case of the coexistence of multiple PCA modes, 
we determined the most suitable distance for each PCA 
mode. Specifically, we arbitrarily fixed the distance 
between the 1 × point charge and μ2-OH or μ3-O (d1×) 
and/or the distance between the 2 × point charge and 
μ2-O (d2×). Subsequently, we successively adjusted d5× 
until we determined the optimal value. For the Zn–Al 
LDH and Cd–Cal molecular clusters, we determined the 
optimal d1× or d2× after fixing d5×. However, confirm-
ing the most suitable distance d2× (d1×) in the Cd–HAp 
molecular cluster requires d1× (d2×) and d5× to be both 
fixed.

In this study, we used the exchange–correlation func-
tional B3LYP for Qtz and Zn–Al LDH, and BP86 for Cd–
Cal and Cd–HAp. We used the all-electronic basis set 
6–311G (d) [49, 50] to describe the wavefunction of the 
Qtz molecular cluster and a mixed basis set to describe 
the wavefunction of other systems: LanL2DZ for Zn [51–
53]; LanL2MB for Cd [52]; 6–311 + G (d, p) for Al, O, and 
H in Zn–Al LDH; and 6–311G (d) for C, Ca, P, O, and 
H in Cd–Cal and Cd–HAp. We also performed harmonic 
vibrational frequency analyses to check whether there 
was an imaginary frequency and to ensure that the most 
stable configuration corresponded to at least the local 
minima on the potential electronic energy surface. We 
calculated electronic energy and performed geometrical 
optimization and harmonic vibrational frequency analy-
ses using Gaussian09 code [54].

Relative volume change
We calculated the relative volume change (ΔV/V0) to 
quantify the expansion or contraction of the molecular 

Fig. 3  Electronic energy of the Si–Qtz system varies with d5×
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clusters during geometric optimization. By comparing 
the relative volume change (relative to the volume of the 
unoptimized molecular cluster) and the system electronic 
energy, we screened the configuration with little volume 
change with respect to the natural mineral lattice and the 
lowest electronic energy. Only this method could ensure 
that the simulation matched the real scenario to the larg-
est extent. Because a single molecular cluster is not a unit 
cell or supercell of a mineral, accurately calculating the 
molecular cluster volume using cell parameters is impos-
sible. The wavefunction or electronic density of a mole-
cule is a function of space points. Moreover, the Monte 
Carlo method can be used to calculate the molecular 
cluster volume (molecular van der Waals volume), which 
is the space enclosed by an isosurface with an electron 
density of x e/Bohr3, where x represents the electron den-
sity value of the isosurface. We set up a rectangular box 
with volume V for molecular volume integration. Subse-
quently, we placed many random points (m) in the box 
for sampling and tested the electron densities at these 
space points to determine if they were larger than x e/
Bohr3. Finally, we counted the number of points (n) with 
electron densities larger than x e/Bohr3, for which the 
van der Waals volume of the molecule was n/m*V [55, 
56]. Bader et al. [57] proposed a more accurate definition 
of the van der Waals volume, stating that if a molecule is 
in the gas phase, an isosurface with an electron density 
of 0.001 e/Bohr3 is considered a van der Waals surface. 
Such surfaces typically contain more than 98% the elec-
tron density of a molecule. For molecules in a condensed 
state, intermolecular extrusion and various forms of 
interaction cause the van der Waals surface to penetrate. 
Using an isosurface with an electron density of 0.002 e/
Bohr3 as the van der Waals surface is generally recom-
mended. Among the molecular clusters constructed in 
this study, Cd–HAp had the largest number of atoms (no 
more than 169 atoms). Hence, we treated the molecular 
clusters as small molecules in the gas phase and used an 
isosurface with an electron density of 0.001 e/Bohr3 as 
the van der Waals surface of the molecular clusters. Cd–
HAp was studied by He et al. [25], but they did not select 
the optimal PCA, by strictly adhering to our procedure. 
We rechecked the optimal PCA for this mineral, empha-
sizing the relative volume changes for all clusters.

Calculating the van der Waals volume requires the 
molecular wavefunctions. We obtained the wavefunc-
tion files using Gaussian09 code [54]. By inputting i, x, 
and k values, we calculated the volume using the Multi-
wfn program [58], where i is a proxy for the number of 
random points distributed in the box and k is the space 
reserved by the box around the molecule. Alternatively, 
the shortest distance between the outermost atom and 

the boundary of the box is k times the van der Waals 
radius of the atom. For specific calculations, we distrib-
uted 100 × 2i random points in a box and set the value of 
k to 1.7. We used an isosurface with an electron density 
of 0.001 e/Bohr3 to envelop the molecule. Normally, to 
obtain a more accurate molecular van der Waals volume, 
the density of random points in the box must not be less 
than 2000 points/Bohr3. We used the following formula 
for these calculations:

where Vopt denotes the optimized volume and V0 is the 
unoptimized volume. A positive ΔV/V0 indicates expan-
sion of the molecular cluster, whereas a negative ΔV/V0 
suggests contraction of the molecular cluster.

Isotopic equilibrium fractionation factor
The Bigeleisen–Mayer equation and Urey model [59, 
60] provide the equilibrium constants for the isotopic 
exchange reaction, laying the foundation for the theory 
and calculation of stable isotope geochemistry. Consider 
the following isotope exchange reaction as an example:

where AX and AXʹ represent compounds with heavy and 
light isotopes, respectively; X and Xʹ denote the ideal sin-
gle-atom gas with heavy and light isotopes, respectively. 
The reaction equilibrium constant K can be obtained as 
follows from the ratio of the partition functions of the 
products and reactants:

where Qtrans is the transitional partition function, Qrot is 
the rotational partition function, Qvib is the vibrational 
partition function, and Qelec is the electronic partition 
function [61]. For light elements, the difference in the 
ground-state electronic energy of the compound before 
and after isotope substitution is indistinguishable, so 
Qelec can be ignored. The translational, rotational, and 
vibrational partition functions can be respectively writ-
ten as follows:

(2)�V
/

V0 =
Vopt − V0

V0
× 100%

(3)AX′
+ X = AX+ X′

(4)K =
QAX

transQ
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elec

(5)Qtrans = V

(
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where V is the volume, M is the mass, IA is the moment 
of inertia around the axis A of rotation, σ is the symmetry 
number of the molecule, and ui = hcωi/kT, where h repre-
sents the Planck constant, k is the Boltzmann constant, 
T is the temperature in degrees Kelvin, c is the speed 
of light, and ω is the harmonic frequency in cm−1. The 
Teller-Redlich [62] approximation is done as follows:

Therefore, the ratio of the translational partition func-
tion and the ratio of the rotational partition function can 
be expressed by the vibrational frequency. Through algo-
rism transformation, the reduced partition function ratio 
(RPFR(AX/AX’)) is defined as follows:

When only one atom is to be exchanged in the molecular 
cluster, the RPFR is equivalent to the β factor [61], which is 
the isotopic fractionation factor between a compound and 
the ideal atomic gas [63]. Given the β factors of a pair of 
compounds or minerals in equilibrium, the isotope frac-
tionation factor α can be derived from the ratio of their β 

(7)Qvib =

∏

i

e−u
i/2

1− e−u
i

(8)
(

M

M′

)3/2

AX

(

IAIBIC

I′AI
′
BI

′
C

)1/2

AX

(

m′

m

)3n/2

X

=

∏

i

ui

u′ i

(9)
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σ
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3n−6
∏ u

u′

(
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u
2

e−
u′

2
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1− e−u′

1− e−u
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factors: α = βA/βB, where A and B denote different com-
pounds or minerals. The isotopic equilibrium fractionation 
between the two phases can then be obtained as follows:

Results
Influence of d5×, d2×, and d1× on system electronic energy
We collected the electronic energy values of the four 
systems and performed polynomial fitting. The results 
showed that the system electronic energy had a good par-
abolic relationship with d5×, d2×, and d1×, and the R2 value 
ranged from 0.60 to 0.99 (Figs. 3, 4, 5, 6). The PCA modes 
corresponding to the most stable configurations of the 
molecular clusters were 5 × 116, 5 × 116, 5 × 111/1 × 76, 
5 × 123/2 × 122, and 5 × 123/2 × 119/1 × 115  pm for 
Si–Qtz, O–Qtz, Zn–Al LDH, Cd–Cal, and Cd–HAp, 
respectively.

Effect of d5×, d2×, and d1× on relative volume change
During the geometric optimization process, the volume 
of the Si–Qtz molecular cluster decreased, with ΔV/V0 
ranging from − 2.05 to  − 0.11% (Fig. 7). We observed 
an extremely strong linear correlation between ΔV/
V0 and d5× (R2 = 0.9895). ΔV/V0 gradually increased 
with an increase in d5×. We recorded the ΔV/V0 value 
as  − 0.39% when the Si–Qtz molecular cluster reached 
the optimal structure. However, the volume of the Zn–
Al LDH molecular cluster without interlayer anions 

(10)�
A−B ≈ 103 ln αA−B = 103(lnβ

A
− lnβB)

Fig. 4  Electronic energy of the Zn–Al LDH system varies with d5× and d1×
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expanded during the optimization process, with ΔV/V0 
ranging from 3.17 to 3.54% (Fig. 8). The relative volume 
change was 3.54% when the system reached its lowest 
electronic energy configuration (5 × 111/1 × 76  pm). 
But when interlayer anions were introduced, the rela-
tive volume change reached 1.96% for the lowest elec-
tronic energy configuration (5 × 111/1 × 76  pm). As 

shown in Fig. 9, the volume of Cd–Cal expanded dur-
ing the optimization process ranging from 0.24 to 
0.50%. When the structure reached the maximum sta-
bility (5 × 123/2 × 122  pm), the volume expansion was 
0.45% (Table 4). The volume of the Cd–HAp molecular 
clusters also expanded during the optimization pro-
cess, with a volume expansion of 0.64–0.92%. We found 

Fig. 5  Electronic energy of the Cd–Cal system varies with d5× and d2×

Fig. 6  Electronic energy of the Cd–HAp system varies with d5×, d2× and d1×



Page 11 of 16Wang et al. Geochemical Transactions            (2022) 23:1 	

that ΔV/V0 was 0.74% when the system reached the 
most stable configuration (5 × 123/2 × 119/1 × 115 pm) 
(Fig. 10), which is identical to the 0.7% reported by He 
et al. [25].

Discussion
Geometrically optimized configuration
In this study, we obtained an average Si–O bond length 
in the Qtz cluster with the lowest electronic energy of 
1.63  Å (Table  3). Purton et  al. [64] used ab  initio Local 
Density Functional (LDF) theory to study the structure of 
α–quartz, and obtained an average Si–O bond length of 
1.62 Å. He and Liu [22] calculated an average Si–O bond 
length of 1.61 Å on the 6–311G (2df) level. Hazen et al. 
[39] and Kihara [48] obtained the average Si–O bond 
lengths of 1.61  Å and 1.62  Å, respectively, using X-ray 
diffraction. Our results are consistent with those of previ-
ous theoretical calculations and experimental studies.

The central Zn2+ in the Zn–Al LDH cluster had a coor-
dination number of six, with an average Zn–O bond 
length of 2.10 Å. Gou et al. [3], by X-ray diffraction and 
EXAFS experiments, obtained an average Zn–O bond 
length of 2.08 Å (coordination number = 6.5) in the Zn–
Al layer-like double hydroxides. Thus, the findings of 
these two studies are in good agreement with each other. 
For Cd–Cal, the average Cd–O (2.28  Å) bond length 
calculated in this study is consistent with the results 
obtained using EXAFS data (2.30  Å), as measured by 
Bailey et  al. [65]. According to our procedure, the aver-
age Cd–O bond length in the Cd–HAp cluster was con-
firmed to be 2.39  Å, which is exactly the same as the 
average Cd–O (2.39  Å) bond length measured by Hata 
et  al. [66] and the average Cd–O (2.38  Å) bond length 
calculated by He et al. [25].

Fig. 7  ΔV/V0 variations in the Si–Qtz molecular cluster

Fig. 8  ΔV/V0 variations in the Zn–Al LDH molecular cluster. The 
red points were the relative volume changes for molecular cluster 
without interlayer anions, while the black point was that for 
molecular cluster with interlayer anions

Fig. 9  ΔV/V0 variations in the Cd–Cal molecular cluster

Fig. 10  ΔV/V0 variations in the Cd–HAp molecular cluster
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Relative volume changes
The relative volume change of mineral lattices dur-
ing geometrical optimization has only been studied by 
a few researchers. Wang et  al. [4] calculated the ΔV/V0 
values of Ba-containing species by using the periodic 
boundary method. Except for Ba(OH)2(H2O)8, the rela-
tive volume change of which was -0.67%, the ΔV/V0 of 
the other species ranged from 1.26% to 6.30%, with an 
average of 4.46%. Ducher et  al. [67] also used periodic 
boundary method to calculate the ΔV/V0 of various Zn-
containing minerals (sulfide, carbonate, oxide, silicate, 
sulfate, and arsenate), which ranged between 1.40% and 
5.80%, with an average of 3.56%. Thus, we concluded 
that for the majority of the studied systems, the ΔV/V0 
values calculated using the molecular cluster method are 
much smaller (Table 4), approximately one-tenth of those 
obtained by the periodic boundary method.

We found that the ΔV/V0 of quartz using the peri-
odic boundary method calculated by the PBE and LDA 
functionals, primarily used by Méheut et  al. [68], were 
7.17% and -2.66%, respectively. Hamann [69] obtained 
the ΔV/V0 of quartz using GGA (4.61%, PW91) and LDA 
(-2.75%). The ΔV/V0 obtained in this study was -0.39%, 
which is substantially less than that obtained in previous 
studies. The Zn–Al LDH has a slightly larger expansion 
(1.96%) during geometric optimization, compared to 
that of other minerals in our study. But it is still smaller 
than those obtained by the periodic boundary method. 
The volume of the calculated Cd-containing calcite also 
increased (0.45%). However, the relative volume change 
of the Mn-containing calcite (3.54%) [70] and tetrahe-
dral AO4

2− group (A = S, Cr, Se)-doped calcite (3.47%) 
[71] calculated by the periodic boundary method were 
larger than that obtained during this study. For HAp 
without impurities, Sailuam et al. [72] calculated a ΔV/V0 
of 3.43% using GGA–PBE as the exchange–correlation 
functional. Bhat et al. [73] obtained ΔV/V0 (4.37%) using 
the exchange–correlation functional GGA–PW91. In 
contrast, the ΔV/V0 of Cd–HAp (Cd/(Cd + Ca) = 1/13) 
calculated in this study was 0.74%, which is much smaller 
than the previously reported values.

�30/28SiQtz - H4SiO4
 and �18/16OQtz - (H2O)n

With different exchange–correlation functionals and 
basis sets, 1000lnβ may be different. At 298  K, Méheut 
et al. [74] calculated the silicon β-factor of quartz as 69‰ 
and the oxygen β-factor as 102‰. At the same tempera-
ture, our silicon β–factor (73.65‰) and oxygen β-factors 
(110.31‰) were slightly larger than those reported by 
Méheut et  al. [74]. However, when calculating the frac-
tionation factor α, the difference in the β-factor for the 
same mineral can be offset. No substantial difference 

Table 3  Isotopic equilibrium fractionation between molecular clusters and their corresponding aqueous solutions

a Si–O bond length (α–quartz, Ab initio LDF theory, Purton et al. [64])
b Si–O bond length (quartz, DFT calculations, He and Liu [22])
c Si–O bond length (quartz, X-ray diffraction, Hazen et al. [39])
d Si–O bond length (quartz, X-ray diffraction at 848 K, Kihara [48])
e Zn–O bond length (X-ray diffraction and EXAFS, Gou et al. [3])
f Cd–O bond length (EXAFS, Bailey et al. [65])
g DFT calculations (He et al. [25])

Cluster Calculated bond length (Å) Experimental bond 
length (Å)

1000lnβ (cluster, 
298 K, ‰)

1000lnβ 
(aquocomplex, 298 K, 
‰)

Δ cluster-aquocomplex
(298 K, ‰)

Si–Qtz 1.63, 1.62a, 1.61b 1.61c, 1.62d 73.65 71.63 2.02 (Si isotopes)

O–Qtz 1.63 1.61c 110.31 74.26 36.05 (O isotopes)

Zn–Al LDH 2.10 2.08e 4.87 3.75 1.12 (Zn isotopes)

Cd–Cal 2.28 2.30f 2.62 2.88g  − 0.26 (Cd iso‑
topes)

Table 4  Relative volume change of solid molecular clusters

a PBE [68]
b LDA [68]
c GGA(PW91) [69]
d LDA [69]
e CaCO3 [70]
f [71]
g DFT calculations [25]
h GGA–PBE [72]
i GGA–PW91 [73]

Cluster ΔV/V0 (%)

This study Previous studies

Si–Qtz  − 0.39 7.17a,  − 2.66b, 4.61c,  − 2.75d

Zn–Al LDH 1.96 –

Cd–Cal 0.45 3.54e, 3.47f

Cd–HAp 0.74 0.7g , 3.43 h, 4.37i
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was observed between the �18/16Oquartz - (H2O) value 
reported by Méheut et al. [68] and that obtained in this 
study (31.37‰ vs. 36.05‰). We compared the silicon and 
oxygen fractionation factors calculated in this study with 
previous experimental and theoretical data.

He and Liu [22] calculated the Si isotopic equilibrium 
fractionation between quartz and H4SiO4 solution at 
273–673  K using B3LYP/6–311G(2df). They thought 
that a large Si isotopic equilibrium fractionation fac-
tor of approximately 3.3‰ exists between quartz and 
H4SiO4 solution at 298  K. Dupuis et  al. [75] calculated 
the fractionation factors of Si isotopes between quartz 
and aqueous H4SiO4 at 273–323 K using first-principles 

methods, and found that at 300  K, the fractionation 
between quartz and H4SiO4 was + 2.1 ± 0.2‰. Figure 11 
shows that our calculation results are in good agreement 
with those of Dupuis et al. [75]. Under neutral and acidic 
conditions, Si often exists in the form of aqueous H4SiO4 
solutions. We considered the experimentally determined 
∆30/28Siquartz-aqueous solution to be �30/28Siquartz-H4SiO4 . From 
this perspective, the available experimental data [5, 7, 76, 
77] match the existing theoretical data.

To verify the reliability of the VVCM method, we 
further calculated the equilibrium oxygen isotope 
fractionation factor between quartz and the aqueous 
solution and then compared our result with previous 
experimental and theoretical results (Fig.  12). In the 
low-temperature range, compared to the theoretical 
results of the linear fitting reported by Méheut et  al. 
[68], our calculated results are more consistent with 
the experimental values [6, 83] and the fitting equa-
tion based on experimental data [84]. However, at high 
temperatures, both theoretical results are less than the 
experimental value [85–91]. For example, at 673 K, our 
calculated oxygen isotope equilibrium fractionation 
factor and the experimental values reported by Méheut 
et al. [68] and Sharp et al. [84] were 1.79‰, 2.77‰, and 
4.25‰, respectively.

In conclusion, the quartz geometric optimization and 
calculation of traditional/nontraditional stable isotope 
fractionation factors was accurate using the improved 
VVCM method. Finally, we can reliably apply this method 
to other systems such as Zn–Al LDH and Cd–Cal.

�66/64Zn
Zn−Al LDH - Zn(H2O)

2+
n

 and �114/110Cd(Cd−Cal)−Cd(H2O)
2+
n

Because no experimental or theoretical data on Zn iso-
tope fractionation between Zn–Al LDH and the solu-
tion have been published, we chose the Zn isotope 
fractionation produced during Zn2+ adsorption on the 
aluminum oxide/hydroxide surface for comparison. As 
reported by Komárek et  al. [92] and Gou et  al. [93], at 
higher surface coverage, Zn–Al LDH was detected by 
XRD on the surface of γ-Al2O3 with a fractionation fac-
tor of ∆66/64Znsolid-aq = 0.02 ± 0.07‰. Pokrovsky et  al. 
[94] also reported lower fractionation on corundum 
(∆66/64Znsolid-aq = 0.19 ± 0.05‰) and gibbsite (∆66/64Znsolid-

aq = 0.10 ± 0.05‰) surfaces, suggesting that the potential 
formation of Zn–Al LDH on the surface of gibbsite and 
corundum is similar to that of γ-Al2O3. Although the size 
of calculated isotope fractionation (1.12‰) was larger than 
that obtained experimentally, the fractionation directions 
were consistent with each other. In fact, experimentally 
determined Zn isotope fractionation factor for adsorp-
tion on aluminum oxides/hydroxides may be complicated 
by mixed adsorption and precipitation. In future, we hope 

Fig. 11  Theoretical Si isotope equilibrium fractionation factors 
between quartz and aqueous H4SiO4 solution [5, 7, 22, 75–82]

Fig. 12  Theoretical O isotope equilibrium fractionation factors 
between quartz and liquid water [6, 68, 83–91]
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that Zn isotope fractionation can be experimentally deter-
mined for the individual Zn–Al LDH precipitation.

The calculated isotopic equilibrium fractionation 
between Cd–Cal and Cd-containing aqueous solu-
tion was -0.26‰. Previous studies on precipitated cal-
cite from artificial seawater solutions reported the 
entry of Cd2+ into the calcite from seawater, with the 
Cd equilibrium isotope fractionation, ∆114/110Cdcalcite-

seawater = -0.45 ± 0.12‰ [95]. Furthermore, Xie et  al. 
[96] revealed apparent Cd isotope fractionation in the 
coprecipitation of Cd–calcite, with ∆114/110Cd calcite-aque-

ous = -0.38 ± 0.18‰ to -0.20 ± 0.12‰. Our theoretical 
calculation results are consistent with previous experi-
mental results.

Conclusions
We used the first-principles calculation method to geometri-
cally optimize the molecular clusters of Qtz, Zn–Al LDH, 
and Cd–Cal and obtained relative volume changes of -0.39%, 
1.96%, and 0.45%, respectively. Compared to the periodic 
boundary method, the improved VVCM method slightly 
changes the molecular cluster volume during optimization, 
which increased the accuracy of our simulations. We also 
calculated the isotopic equilibrium fractionation between 
Qtz, Zn–Al LDH, Cd–Cal, and their corresponding aqueous 
solutions at 298  K, which were as follows: �30/28SiQtz - H4SiO4

= 2.20‰ , �18/16OQtz - (H2O)n = 36.05‰ , �66/64ZnZn−Al LDH - Zn(H2O)2+n
 

= 1.12‰ and �114/110Cd
(Cd−Cal)−Cd(H2O)2+n

= −0.26‰ . These results 
are consistent with those of previous studies, confirming the 
reliability of the improved VVCM method for crystal-lattice 
optimization.
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